![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemro | Structured version Visualization version GIF version |
Description: Range of 𝑅 is included in 𝑂. (Contributed by Thierry Arnoux, 17-Apr-2017.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
ballotth.s | ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
ballotth.r | ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
Ref | Expression |
---|---|
ballotlemro | ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) ∈ 𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ballotth.m | . . . 4 ⊢ 𝑀 ∈ ℕ | |
2 | ballotth.n | . . . 4 ⊢ 𝑁 ∈ ℕ | |
3 | ballotth.o | . . . 4 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
4 | ballotth.p | . . . 4 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
5 | ballotth.f | . . . 4 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
6 | ballotth.e | . . . 4 ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | |
7 | ballotth.mgtn | . . . 4 ⊢ 𝑁 < 𝑀 | |
8 | ballotth.i | . . . 4 ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) | |
9 | ballotth.s | . . . 4 ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) | |
10 | ballotth.r | . . . 4 ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | ballotlemrval 34060 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) = ((𝑆‘𝐶) “ 𝐶)) |
12 | imassrn 6068 | . . . 4 ⊢ ((𝑆‘𝐶) “ 𝐶) ⊆ ran (𝑆‘𝐶) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ballotlemsf1o 34056 | . . . . . 6 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ∧ ◡(𝑆‘𝐶) = (𝑆‘𝐶))) |
14 | 13 | simpld 494 | . . . . 5 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁))) |
15 | f1ofo 6840 | . . . . 5 ⊢ ((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) → (𝑆‘𝐶):(1...(𝑀 + 𝑁))–onto→(1...(𝑀 + 𝑁))) | |
16 | forn 6808 | . . . . 5 ⊢ ((𝑆‘𝐶):(1...(𝑀 + 𝑁))–onto→(1...(𝑀 + 𝑁)) → ran (𝑆‘𝐶) = (1...(𝑀 + 𝑁))) | |
17 | 14, 15, 16 | 3syl 18 | . . . 4 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ran (𝑆‘𝐶) = (1...(𝑀 + 𝑁))) |
18 | 12, 17 | sseqtrid 4030 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝑆‘𝐶) “ 𝐶) ⊆ (1...(𝑀 + 𝑁))) |
19 | 11, 18 | eqsstrd 4016 | . 2 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) ⊆ (1...(𝑀 + 𝑁))) |
20 | f1of1 6832 | . . . . . . 7 ⊢ ((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) → (𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁))) | |
21 | 14, 20 | syl 17 | . . . . . 6 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁))) |
22 | eldifi 4122 | . . . . . . . 8 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 𝐶 ∈ 𝑂) | |
23 | 1, 2, 3 | ballotlemelo 34030 | . . . . . . . 8 ⊢ (𝐶 ∈ 𝑂 ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀)) |
24 | 22, 23 | sylib 217 | . . . . . . 7 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀)) |
25 | 24 | simpld 494 | . . . . . 6 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 𝐶 ⊆ (1...(𝑀 + 𝑁))) |
26 | id 22 | . . . . . 6 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 𝐶 ∈ (𝑂 ∖ 𝐸)) | |
27 | f1imaeng 9024 | . . . . . 6 ⊢ (((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁)) ∧ 𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ 𝐶 ∈ (𝑂 ∖ 𝐸)) → ((𝑆‘𝐶) “ 𝐶) ≈ 𝐶) | |
28 | 21, 25, 26, 27 | syl3anc 1369 | . . . . 5 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝑆‘𝐶) “ 𝐶) ≈ 𝐶) |
29 | 11, 28 | eqbrtrd 5164 | . . . 4 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) ≈ 𝐶) |
30 | hasheni 14325 | . . . 4 ⊢ ((𝑅‘𝐶) ≈ 𝐶 → (♯‘(𝑅‘𝐶)) = (♯‘𝐶)) | |
31 | 29, 30 | syl 17 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (♯‘(𝑅‘𝐶)) = (♯‘𝐶)) |
32 | 24 | simprd 495 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (♯‘𝐶) = 𝑀) |
33 | 31, 32 | eqtrd 2767 | . 2 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (♯‘(𝑅‘𝐶)) = 𝑀) |
34 | 1, 2, 3 | ballotlemelo 34030 | . 2 ⊢ ((𝑅‘𝐶) ∈ 𝑂 ↔ ((𝑅‘𝐶) ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘(𝑅‘𝐶)) = 𝑀)) |
35 | 19, 33, 34 | sylanbrc 582 | 1 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) ∈ 𝑂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3056 {crab 3427 ∖ cdif 3941 ∩ cin 3943 ⊆ wss 3944 ifcif 4524 𝒫 cpw 4598 class class class wbr 5142 ↦ cmpt 5225 ◡ccnv 5671 ran crn 5673 “ cima 5675 –1-1→wf1 6539 –onto→wfo 6540 –1-1-onto→wf1o 6541 ‘cfv 6542 (class class class)co 7414 ≈ cen 8950 infcinf 9450 ℝcr 11123 0cc0 11124 1c1 11125 + caddc 11127 < clt 11264 ≤ cle 11265 − cmin 11460 / cdiv 11887 ℕcn 12228 ℤcz 12574 ...cfz 13502 ♯chash 14307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-oadd 8482 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-sup 9451 df-inf 9452 df-dju 9910 df-card 9948 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-nn 12229 df-2 12291 df-n0 12489 df-z 12575 df-uz 12839 df-rp 12993 df-fz 13503 df-hash 14308 |
This theorem is referenced by: ballotlemfrc 34069 ballotlemfrceq 34071 ballotlemfrcn0 34072 ballotlemrc 34073 |
Copyright terms: Public domain | W3C validator |