Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemro | Structured version Visualization version GIF version |
Description: Range of 𝑅 is included in 𝑂. (Contributed by Thierry Arnoux, 17-Apr-2017.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
ballotth.s | ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
ballotth.r | ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
Ref | Expression |
---|---|
ballotlemro | ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) ∈ 𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ballotth.m | . . . 4 ⊢ 𝑀 ∈ ℕ | |
2 | ballotth.n | . . . 4 ⊢ 𝑁 ∈ ℕ | |
3 | ballotth.o | . . . 4 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
4 | ballotth.p | . . . 4 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
5 | ballotth.f | . . . 4 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
6 | ballotth.e | . . . 4 ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | |
7 | ballotth.mgtn | . . . 4 ⊢ 𝑁 < 𝑀 | |
8 | ballotth.i | . . . 4 ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) | |
9 | ballotth.s | . . . 4 ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) | |
10 | ballotth.r | . . . 4 ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | ballotlemrval 32484 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) = ((𝑆‘𝐶) “ 𝐶)) |
12 | imassrn 5980 | . . . 4 ⊢ ((𝑆‘𝐶) “ 𝐶) ⊆ ran (𝑆‘𝐶) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ballotlemsf1o 32480 | . . . . . 6 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ∧ ◡(𝑆‘𝐶) = (𝑆‘𝐶))) |
14 | 13 | simpld 495 | . . . . 5 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁))) |
15 | f1ofo 6723 | . . . . 5 ⊢ ((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) → (𝑆‘𝐶):(1...(𝑀 + 𝑁))–onto→(1...(𝑀 + 𝑁))) | |
16 | forn 6691 | . . . . 5 ⊢ ((𝑆‘𝐶):(1...(𝑀 + 𝑁))–onto→(1...(𝑀 + 𝑁)) → ran (𝑆‘𝐶) = (1...(𝑀 + 𝑁))) | |
17 | 14, 15, 16 | 3syl 18 | . . . 4 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ran (𝑆‘𝐶) = (1...(𝑀 + 𝑁))) |
18 | 12, 17 | sseqtrid 3973 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝑆‘𝐶) “ 𝐶) ⊆ (1...(𝑀 + 𝑁))) |
19 | 11, 18 | eqsstrd 3959 | . 2 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) ⊆ (1...(𝑀 + 𝑁))) |
20 | f1of1 6715 | . . . . . . 7 ⊢ ((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) → (𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁))) | |
21 | 14, 20 | syl 17 | . . . . . 6 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁))) |
22 | eldifi 4061 | . . . . . . . 8 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 𝐶 ∈ 𝑂) | |
23 | 1, 2, 3 | ballotlemelo 32454 | . . . . . . . 8 ⊢ (𝐶 ∈ 𝑂 ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀)) |
24 | 22, 23 | sylib 217 | . . . . . . 7 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀)) |
25 | 24 | simpld 495 | . . . . . 6 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 𝐶 ⊆ (1...(𝑀 + 𝑁))) |
26 | id 22 | . . . . . 6 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 𝐶 ∈ (𝑂 ∖ 𝐸)) | |
27 | f1imaeng 8800 | . . . . . 6 ⊢ (((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁)) ∧ 𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ 𝐶 ∈ (𝑂 ∖ 𝐸)) → ((𝑆‘𝐶) “ 𝐶) ≈ 𝐶) | |
28 | 21, 25, 26, 27 | syl3anc 1370 | . . . . 5 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝑆‘𝐶) “ 𝐶) ≈ 𝐶) |
29 | 11, 28 | eqbrtrd 5096 | . . . 4 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) ≈ 𝐶) |
30 | hasheni 14062 | . . . 4 ⊢ ((𝑅‘𝐶) ≈ 𝐶 → (♯‘(𝑅‘𝐶)) = (♯‘𝐶)) | |
31 | 29, 30 | syl 17 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (♯‘(𝑅‘𝐶)) = (♯‘𝐶)) |
32 | 24 | simprd 496 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (♯‘𝐶) = 𝑀) |
33 | 31, 32 | eqtrd 2778 | . 2 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (♯‘(𝑅‘𝐶)) = 𝑀) |
34 | 1, 2, 3 | ballotlemelo 32454 | . 2 ⊢ ((𝑅‘𝐶) ∈ 𝑂 ↔ ((𝑅‘𝐶) ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘(𝑅‘𝐶)) = 𝑀)) |
35 | 19, 33, 34 | sylanbrc 583 | 1 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) ∈ 𝑂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 ∖ cdif 3884 ∩ cin 3886 ⊆ wss 3887 ifcif 4459 𝒫 cpw 4533 class class class wbr 5074 ↦ cmpt 5157 ◡ccnv 5588 ran crn 5590 “ cima 5592 –1-1→wf1 6430 –onto→wfo 6431 –1-1-onto→wf1o 6432 ‘cfv 6433 (class class class)co 7275 ≈ cen 8730 infcinf 9200 ℝcr 10870 0cc0 10871 1c1 10872 + caddc 10874 < clt 11009 ≤ cle 11010 − cmin 11205 / cdiv 11632 ℕcn 11973 ℤcz 12319 ...cfz 13239 ♯chash 14044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fz 13240 df-hash 14045 |
This theorem is referenced by: ballotlemfrc 32493 ballotlemfrceq 32495 ballotlemfrcn0 32496 ballotlemrc 32497 |
Copyright terms: Public domain | W3C validator |