Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemro Structured version   Visualization version   GIF version

Theorem ballotlemro 31890
Description: Range of 𝑅 is included in 𝑂. (Contributed by Thierry Arnoux, 17-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
ballotth.r 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
Assertion
Ref Expression
ballotlemro (𝐶 ∈ (𝑂𝐸) → (𝑅𝐶) ∈ 𝑂)
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐   𝑆,𝑘,𝑖,𝑐
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝑅(𝑥,𝑖,𝑘,𝑐)   𝑆(𝑥)   𝐸(𝑥)   𝐹(𝑥)   𝐼(𝑥)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemro
StepHypRef Expression
1 ballotth.m . . . 4 𝑀 ∈ ℕ
2 ballotth.n . . . 4 𝑁 ∈ ℕ
3 ballotth.o . . . 4 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
4 ballotth.p . . . 4 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
5 ballotth.f . . . 4 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
6 ballotth.e . . . 4 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
7 ballotth.mgtn . . . 4 𝑁 < 𝑀
8 ballotth.i . . . 4 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
9 ballotth.s . . . 4 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
10 ballotth.r . . . 4 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10ballotlemrval 31885 . . 3 (𝐶 ∈ (𝑂𝐸) → (𝑅𝐶) = ((𝑆𝐶) “ 𝐶))
12 imassrn 5907 . . . 4 ((𝑆𝐶) “ 𝐶) ⊆ ran (𝑆𝐶)
131, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsf1o 31881 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ∧ (𝑆𝐶) = (𝑆𝐶)))
1413simpld 498 . . . . 5 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)))
15 f1ofo 6597 . . . . 5 ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) → (𝑆𝐶):(1...(𝑀 + 𝑁))–onto→(1...(𝑀 + 𝑁)))
16 forn 6568 . . . . 5 ((𝑆𝐶):(1...(𝑀 + 𝑁))–onto→(1...(𝑀 + 𝑁)) → ran (𝑆𝐶) = (1...(𝑀 + 𝑁)))
1714, 15, 163syl 18 . . . 4 (𝐶 ∈ (𝑂𝐸) → ran (𝑆𝐶) = (1...(𝑀 + 𝑁)))
1812, 17sseqtrid 3967 . . 3 (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶) “ 𝐶) ⊆ (1...(𝑀 + 𝑁)))
1911, 18eqsstrd 3953 . 2 (𝐶 ∈ (𝑂𝐸) → (𝑅𝐶) ⊆ (1...(𝑀 + 𝑁)))
20 f1of1 6589 . . . . . . 7 ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) → (𝑆𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁)))
2114, 20syl 17 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁)))
22 eldifi 4054 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → 𝐶𝑂)
231, 2, 3ballotlemelo 31855 . . . . . . . 8 (𝐶𝑂 ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀))
2422, 23sylib 221 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀))
2524simpld 498 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → 𝐶 ⊆ (1...(𝑀 + 𝑁)))
26 id 22 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → 𝐶 ∈ (𝑂𝐸))
27 f1imaeng 8552 . . . . . 6 (((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁)) ∧ 𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ 𝐶 ∈ (𝑂𝐸)) → ((𝑆𝐶) “ 𝐶) ≈ 𝐶)
2821, 25, 26, 27syl3anc 1368 . . . . 5 (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶) “ 𝐶) ≈ 𝐶)
2911, 28eqbrtrd 5052 . . . 4 (𝐶 ∈ (𝑂𝐸) → (𝑅𝐶) ≈ 𝐶)
30 hasheni 13704 . . . 4 ((𝑅𝐶) ≈ 𝐶 → (♯‘(𝑅𝐶)) = (♯‘𝐶))
3129, 30syl 17 . . 3 (𝐶 ∈ (𝑂𝐸) → (♯‘(𝑅𝐶)) = (♯‘𝐶))
3224simprd 499 . . 3 (𝐶 ∈ (𝑂𝐸) → (♯‘𝐶) = 𝑀)
3331, 32eqtrd 2833 . 2 (𝐶 ∈ (𝑂𝐸) → (♯‘(𝑅𝐶)) = 𝑀)
341, 2, 3ballotlemelo 31855 . 2 ((𝑅𝐶) ∈ 𝑂 ↔ ((𝑅𝐶) ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘(𝑅𝐶)) = 𝑀))
3519, 33, 34sylanbrc 586 1 (𝐶 ∈ (𝑂𝐸) → (𝑅𝐶) ∈ 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  {crab 3110  cdif 3878  cin 3880  wss 3881  ifcif 4425  𝒫 cpw 4497   class class class wbr 5030  cmpt 5110  ccnv 5518  ran crn 5520  cima 5522  1-1wf1 6321  ontowfo 6322  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  cen 8489  infcinf 8889  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  cz 11969  ...cfz 12885  chash 13686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-hash 13687
This theorem is referenced by:  ballotlemfrc  31894  ballotlemfrceq  31896  ballotlemfrcn0  31897  ballotlemrc  31898
  Copyright terms: Public domain W3C validator