Proof of Theorem ballotlemfrc
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ballotth.m | . . . . . . . . 9
⊢ 𝑀 ∈ ℕ | 
| 2 |  | ballotth.n | . . . . . . . . 9
⊢ 𝑁 ∈ ℕ | 
| 3 |  | ballotth.o | . . . . . . . . 9
⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | 
| 4 |  | ballotth.p | . . . . . . . . 9
⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | 
| 5 |  | ballotth.f | . . . . . . . . 9
⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦
((♯‘((1...𝑖)
∩ 𝑐)) −
(♯‘((1...𝑖)
∖ 𝑐))))) | 
| 6 |  | ballotth.e | . . . . . . . . 9
⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | 
| 7 |  | ballotth.mgtn | . . . . . . . . 9
⊢ 𝑁 < 𝑀 | 
| 8 |  | ballotth.i | . . . . . . . . 9
⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) | 
| 9 |  | ballotth.s | . . . . . . . . 9
⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) | 
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ballotlemsf1o 34517 | . . . . . . . 8
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ∧ ◡(𝑆‘𝐶) = (𝑆‘𝐶))) | 
| 11 | 10 | simpld 494 | . . . . . . 7
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁))) | 
| 12 |  | f1of1 6846 | . . . . . . 7
⊢ ((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) → (𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁))) | 
| 13 | 11, 12 | syl 17 | . . . . . 6
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁))) | 
| 14 | 13 | adantr 480 | . . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁))) | 
| 15 | 1, 2, 3, 4, 5, 6, 7, 8 | ballotlemiex 34505 | . . . . . . . . . . 11
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0)) | 
| 16 | 15 | simpld 494 | . . . . . . . . . 10
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁))) | 
| 17 | 16 | adantr 480 | . . . . . . . . 9
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁))) | 
| 18 |  | elfzuz3 13562 | . . . . . . . . 9
⊢ ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝑀 + 𝑁) ∈
(ℤ≥‘(𝐼‘𝐶))) | 
| 19 | 17, 18 | syl 17 | . . . . . . . 8
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝑀 + 𝑁) ∈
(ℤ≥‘(𝐼‘𝐶))) | 
| 20 |  | elfzuz3 13562 | . . . . . . . . 9
⊢ (𝐽 ∈ (1...(𝐼‘𝐶)) → (𝐼‘𝐶) ∈ (ℤ≥‘𝐽)) | 
| 21 | 20 | adantl 481 | . . . . . . . 8
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝐼‘𝐶) ∈ (ℤ≥‘𝐽)) | 
| 22 |  | uztrn 12897 | . . . . . . . 8
⊢ (((𝑀 + 𝑁) ∈
(ℤ≥‘(𝐼‘𝐶)) ∧ (𝐼‘𝐶) ∈ (ℤ≥‘𝐽)) → (𝑀 + 𝑁) ∈ (ℤ≥‘𝐽)) | 
| 23 | 19, 21, 22 | syl2anc 584 | . . . . . . 7
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝑀 + 𝑁) ∈ (ℤ≥‘𝐽)) | 
| 24 |  | fzss2 13605 | . . . . . . 7
⊢ ((𝑀 + 𝑁) ∈ (ℤ≥‘𝐽) → (1...𝐽) ⊆ (1...(𝑀 + 𝑁))) | 
| 25 | 23, 24 | syl 17 | . . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (1...𝐽) ⊆ (1...(𝑀 + 𝑁))) | 
| 26 |  | ssinss1 4245 | . . . . . 6
⊢
((1...𝐽) ⊆
(1...(𝑀 + 𝑁)) → ((1...𝐽) ∩ (𝑅‘𝐶)) ⊆ (1...(𝑀 + 𝑁))) | 
| 27 | 25, 26 | syl 17 | . . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((1...𝐽) ∩ (𝑅‘𝐶)) ⊆ (1...(𝑀 + 𝑁))) | 
| 28 |  | f1ores 6861 | . . . . 5
⊢ (((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁)) ∧ ((1...𝐽) ∩ (𝑅‘𝐶)) ⊆ (1...(𝑀 + 𝑁))) → ((𝑆‘𝐶) ↾ ((1...𝐽) ∩ (𝑅‘𝐶))):((1...𝐽) ∩ (𝑅‘𝐶))–1-1-onto→((𝑆‘𝐶) “ ((1...𝐽) ∩ (𝑅‘𝐶)))) | 
| 29 | 14, 27, 28 | syl2anc 584 | . . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶) ↾ ((1...𝐽) ∩ (𝑅‘𝐶))):((1...𝐽) ∩ (𝑅‘𝐶))–1-1-onto→((𝑆‘𝐶) “ ((1...𝐽) ∩ (𝑅‘𝐶)))) | 
| 30 |  | ovex 7465 | . . . . . 6
⊢
(1...𝐽) ∈
V | 
| 31 | 30 | inex1 5316 | . . . . 5
⊢
((1...𝐽) ∩
(𝑅‘𝐶)) ∈ V | 
| 32 | 31 | f1oen 9014 | . . . 4
⊢ (((𝑆‘𝐶) ↾ ((1...𝐽) ∩ (𝑅‘𝐶))):((1...𝐽) ∩ (𝑅‘𝐶))–1-1-onto→((𝑆‘𝐶) “ ((1...𝐽) ∩ (𝑅‘𝐶))) → ((1...𝐽) ∩ (𝑅‘𝐶)) ≈ ((𝑆‘𝐶) “ ((1...𝐽) ∩ (𝑅‘𝐶)))) | 
| 33 |  | hasheni 14388 | . . . 4
⊢
(((1...𝐽) ∩
(𝑅‘𝐶)) ≈ ((𝑆‘𝐶) “ ((1...𝐽) ∩ (𝑅‘𝐶))) → (♯‘((1...𝐽) ∩ (𝑅‘𝐶))) = (♯‘((𝑆‘𝐶) “ ((1...𝐽) ∩ (𝑅‘𝐶))))) | 
| 34 | 29, 32, 33 | 3syl 18 | . . 3
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (♯‘((1...𝐽) ∩ (𝑅‘𝐶))) = (♯‘((𝑆‘𝐶) “ ((1...𝐽) ∩ (𝑅‘𝐶))))) | 
| 35 | 25 | ssdifssd 4146 | . . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((1...𝐽) ∖ (𝑅‘𝐶)) ⊆ (1...(𝑀 + 𝑁))) | 
| 36 |  | f1ores 6861 | . . . . 5
⊢ (((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁)) ∧ ((1...𝐽) ∖ (𝑅‘𝐶)) ⊆ (1...(𝑀 + 𝑁))) → ((𝑆‘𝐶) ↾ ((1...𝐽) ∖ (𝑅‘𝐶))):((1...𝐽) ∖ (𝑅‘𝐶))–1-1-onto→((𝑆‘𝐶) “ ((1...𝐽) ∖ (𝑅‘𝐶)))) | 
| 37 | 14, 35, 36 | syl2anc 584 | . . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶) ↾ ((1...𝐽) ∖ (𝑅‘𝐶))):((1...𝐽) ∖ (𝑅‘𝐶))–1-1-onto→((𝑆‘𝐶) “ ((1...𝐽) ∖ (𝑅‘𝐶)))) | 
| 38 |  | difexg 5328 | . . . . . 6
⊢
((1...𝐽) ∈ V
→ ((1...𝐽) ∖
(𝑅‘𝐶)) ∈ V) | 
| 39 | 30, 38 | ax-mp 5 | . . . . 5
⊢
((1...𝐽) ∖
(𝑅‘𝐶)) ∈ V | 
| 40 | 39 | f1oen 9014 | . . . 4
⊢ (((𝑆‘𝐶) ↾ ((1...𝐽) ∖ (𝑅‘𝐶))):((1...𝐽) ∖ (𝑅‘𝐶))–1-1-onto→((𝑆‘𝐶) “ ((1...𝐽) ∖ (𝑅‘𝐶))) → ((1...𝐽) ∖ (𝑅‘𝐶)) ≈ ((𝑆‘𝐶) “ ((1...𝐽) ∖ (𝑅‘𝐶)))) | 
| 41 |  | hasheni 14388 | . . . 4
⊢
(((1...𝐽) ∖
(𝑅‘𝐶)) ≈ ((𝑆‘𝐶) “ ((1...𝐽) ∖ (𝑅‘𝐶))) → (♯‘((1...𝐽) ∖ (𝑅‘𝐶))) = (♯‘((𝑆‘𝐶) “ ((1...𝐽) ∖ (𝑅‘𝐶))))) | 
| 42 | 37, 40, 41 | 3syl 18 | . . 3
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (♯‘((1...𝐽) ∖ (𝑅‘𝐶))) = (♯‘((𝑆‘𝐶) “ ((1...𝐽) ∖ (𝑅‘𝐶))))) | 
| 43 | 34, 42 | oveq12d 7450 | . 2
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((♯‘((1...𝐽) ∩ (𝑅‘𝐶))) − (♯‘((1...𝐽) ∖ (𝑅‘𝐶)))) = ((♯‘((𝑆‘𝐶) “ ((1...𝐽) ∩ (𝑅‘𝐶)))) − (♯‘((𝑆‘𝐶) “ ((1...𝐽) ∖ (𝑅‘𝐶)))))) | 
| 44 |  | ballotth.r | . . . . 5
⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) | 
| 45 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 44 | ballotlemro 34526 | . . . 4
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) ∈ 𝑂) | 
| 46 | 45 | adantr 480 | . . 3
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝑅‘𝐶) ∈ 𝑂) | 
| 47 |  | elfzelz 13565 | . . . 4
⊢ (𝐽 ∈ (1...(𝐼‘𝐶)) → 𝐽 ∈ ℤ) | 
| 48 | 47 | adantl 481 | . . 3
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 𝐽 ∈ ℤ) | 
| 49 | 1, 2, 3, 4, 5, 46,
48 | ballotlemfval 34493 | . 2
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝐹‘(𝑅‘𝐶))‘𝐽) = ((♯‘((1...𝐽) ∩ (𝑅‘𝐶))) − (♯‘((1...𝐽) ∖ (𝑅‘𝐶))))) | 
| 50 |  | fzfi 14014 | . . . . 5
⊢
(1...(𝑀 + 𝑁)) ∈ Fin | 
| 51 |  | eldifi 4130 | . . . . . . 7
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 𝐶 ∈ 𝑂) | 
| 52 | 1, 2, 3 | ballotlemelo 34491 | . . . . . . . 8
⊢ (𝐶 ∈ 𝑂 ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀)) | 
| 53 | 52 | simplbi 497 | . . . . . . 7
⊢ (𝐶 ∈ 𝑂 → 𝐶 ⊆ (1...(𝑀 + 𝑁))) | 
| 54 | 51, 53 | syl 17 | . . . . . 6
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 𝐶 ⊆ (1...(𝑀 + 𝑁))) | 
| 55 | 54 | adantr 480 | . . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 𝐶 ⊆ (1...(𝑀 + 𝑁))) | 
| 56 |  | ssfi 9214 | . . . . 5
⊢
(((1...(𝑀 + 𝑁)) ∈ Fin ∧ 𝐶 ⊆ (1...(𝑀 + 𝑁))) → 𝐶 ∈ Fin) | 
| 57 | 50, 55, 56 | sylancr 587 | . . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 𝐶 ∈ Fin) | 
| 58 |  | fzfid 14015 | . . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)) ∈ Fin) | 
| 59 |  | ballotlemg | . . . . 5
⊢  ↑ = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣 ∩ 𝑢)) − (♯‘(𝑣 ∖ 𝑢)))) | 
| 60 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 44,
59 | ballotlemgval 34527 | . . . 4
⊢ ((𝐶 ∈ Fin ∧ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)) ∈ Fin) → (𝐶 ↑ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶))) = ((♯‘((((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)) ∩ 𝐶)) − (♯‘((((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)) ∖ 𝐶)))) | 
| 61 | 57, 58, 60 | syl2anc 584 | . . 3
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝐶 ↑ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶))) = ((♯‘((((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)) ∩ 𝐶)) − (♯‘((((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)) ∖ 𝐶)))) | 
| 62 |  | dff1o3 6853 | . . . . . . . . 9
⊢ ((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ↔ ((𝑆‘𝐶):(1...(𝑀 + 𝑁))–onto→(1...(𝑀 + 𝑁)) ∧ Fun ◡(𝑆‘𝐶))) | 
| 63 | 62 | simprbi 496 | . . . . . . . 8
⊢ ((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) → Fun ◡(𝑆‘𝐶)) | 
| 64 |  | imain 6650 | . . . . . . . 8
⊢ (Fun
◡(𝑆‘𝐶) → ((𝑆‘𝐶) “ ((1...𝐽) ∩ (𝑅‘𝐶))) = (((𝑆‘𝐶) “ (1...𝐽)) ∩ ((𝑆‘𝐶) “ (𝑅‘𝐶)))) | 
| 65 | 11, 63, 64 | 3syl 18 | . . . . . . 7
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝑆‘𝐶) “ ((1...𝐽) ∩ (𝑅‘𝐶))) = (((𝑆‘𝐶) “ (1...𝐽)) ∩ ((𝑆‘𝐶) “ (𝑅‘𝐶)))) | 
| 66 | 65 | adantr 480 | . . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶) “ ((1...𝐽) ∩ (𝑅‘𝐶))) = (((𝑆‘𝐶) “ (1...𝐽)) ∩ ((𝑆‘𝐶) “ (𝑅‘𝐶)))) | 
| 67 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ballotlemsima 34519 | . . . . . . 7
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶) “ (1...𝐽)) = (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶))) | 
| 68 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 44 | ballotlemscr 34522 | . . . . . . . 8
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝑆‘𝐶) “ (𝑅‘𝐶)) = 𝐶) | 
| 69 | 68 | adantr 480 | . . . . . . 7
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶) “ (𝑅‘𝐶)) = 𝐶) | 
| 70 | 67, 69 | ineq12d 4220 | . . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (((𝑆‘𝐶) “ (1...𝐽)) ∩ ((𝑆‘𝐶) “ (𝑅‘𝐶))) = ((((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)) ∩ 𝐶)) | 
| 71 | 66, 70 | eqtrd 2776 | . . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶) “ ((1...𝐽) ∩ (𝑅‘𝐶))) = ((((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)) ∩ 𝐶)) | 
| 72 | 71 | fveq2d 6909 | . . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (♯‘((𝑆‘𝐶) “ ((1...𝐽) ∩ (𝑅‘𝐶)))) = (♯‘((((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)) ∩ 𝐶))) | 
| 73 |  | imadif 6649 | . . . . . . . 8
⊢ (Fun
◡(𝑆‘𝐶) → ((𝑆‘𝐶) “ ((1...𝐽) ∖ (𝑅‘𝐶))) = (((𝑆‘𝐶) “ (1...𝐽)) ∖ ((𝑆‘𝐶) “ (𝑅‘𝐶)))) | 
| 74 | 11, 63, 73 | 3syl 18 | . . . . . . 7
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝑆‘𝐶) “ ((1...𝐽) ∖ (𝑅‘𝐶))) = (((𝑆‘𝐶) “ (1...𝐽)) ∖ ((𝑆‘𝐶) “ (𝑅‘𝐶)))) | 
| 75 | 74 | adantr 480 | . . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶) “ ((1...𝐽) ∖ (𝑅‘𝐶))) = (((𝑆‘𝐶) “ (1...𝐽)) ∖ ((𝑆‘𝐶) “ (𝑅‘𝐶)))) | 
| 76 | 67, 69 | difeq12d 4126 | . . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (((𝑆‘𝐶) “ (1...𝐽)) ∖ ((𝑆‘𝐶) “ (𝑅‘𝐶))) = ((((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)) ∖ 𝐶)) | 
| 77 | 75, 76 | eqtrd 2776 | . . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶) “ ((1...𝐽) ∖ (𝑅‘𝐶))) = ((((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)) ∖ 𝐶)) | 
| 78 | 77 | fveq2d 6909 | . . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (♯‘((𝑆‘𝐶) “ ((1...𝐽) ∖ (𝑅‘𝐶)))) = (♯‘((((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)) ∖ 𝐶))) | 
| 79 | 72, 78 | oveq12d 7450 | . . 3
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((♯‘((𝑆‘𝐶) “ ((1...𝐽) ∩ (𝑅‘𝐶)))) − (♯‘((𝑆‘𝐶) “ ((1...𝐽) ∖ (𝑅‘𝐶))))) = ((♯‘((((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)) ∩ 𝐶)) − (♯‘((((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)) ∖ 𝐶)))) | 
| 80 | 61, 79 | eqtr4d 2779 | . 2
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝐶 ↑ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶))) = ((♯‘((𝑆‘𝐶) “ ((1...𝐽) ∩ (𝑅‘𝐶)))) − (♯‘((𝑆‘𝐶) “ ((1...𝐽) ∖ (𝑅‘𝐶)))))) | 
| 81 | 43, 49, 80 | 3eqtr4d 2786 | 1
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝐹‘(𝑅‘𝐶))‘𝐽) = (𝐶 ↑ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)))) |