Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfrc Structured version   Visualization version   GIF version

Theorem ballotlemfrc 31097
Description: Express the value of (𝐹‘(𝑅𝐶)) in terms of the newly defined . (Contributed by Thierry Arnoux, 21-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
ballotth.r 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
ballotlemg = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣𝑢)) − (♯‘(𝑣𝑢))))
Assertion
Ref Expression
ballotlemfrc ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹‘(𝑅𝐶))‘𝐽) = (𝐶 (((𝑆𝐶)‘𝐽)...(𝐼𝐶))))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐   𝑘,𝐽   𝑆,𝑘,𝑖,𝑐   𝑅,𝑖   𝑣,𝑢,𝐶   𝑢,𝐼,𝑣   𝑢,𝐽,𝑣   𝑢,𝑅,𝑣   𝑢,𝑆,𝑣   𝑖,𝐽
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑣,𝑢,𝑖,𝑘,𝑐)   𝑅(𝑥,𝑘,𝑐)   𝑆(𝑥)   𝐸(𝑥,𝑣,𝑢)   (𝑥,𝑣,𝑢,𝑖,𝑘,𝑐)   𝐹(𝑥,𝑣,𝑢)   𝐼(𝑥)   𝐽(𝑥,𝑐)   𝑀(𝑥,𝑣,𝑢)   𝑁(𝑥,𝑣,𝑢)   𝑂(𝑥,𝑣,𝑢)

Proof of Theorem ballotlemfrc
StepHypRef Expression
1 ballotth.m . . . . . . . . 9 𝑀 ∈ ℕ
2 ballotth.n . . . . . . . . 9 𝑁 ∈ ℕ
3 ballotth.o . . . . . . . . 9 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
4 ballotth.p . . . . . . . . 9 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
5 ballotth.f . . . . . . . . 9 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
6 ballotth.e . . . . . . . . 9 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
7 ballotth.mgtn . . . . . . . . 9 𝑁 < 𝑀
8 ballotth.i . . . . . . . . 9 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
9 ballotth.s . . . . . . . . 9 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
101, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsf1o 31084 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ∧ (𝑆𝐶) = (𝑆𝐶)))
1110simpld 489 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)))
12 f1of1 6353 . . . . . . 7 ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) → (𝑆𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁)))
1311, 12syl 17 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁)))
1413adantr 473 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝑆𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁)))
151, 2, 3, 4, 5, 6, 7, 8ballotlemiex 31072 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
1615simpld 489 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
1716adantr 473 . . . . . . . . 9 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
18 elfzuz3 12589 . . . . . . . . 9 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝑀 + 𝑁) ∈ (ℤ‘(𝐼𝐶)))
1917, 18syl 17 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝑀 + 𝑁) ∈ (ℤ‘(𝐼𝐶)))
20 elfzuz3 12589 . . . . . . . . 9 (𝐽 ∈ (1...(𝐼𝐶)) → (𝐼𝐶) ∈ (ℤ𝐽))
2120adantl 474 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐼𝐶) ∈ (ℤ𝐽))
22 uztrn 11943 . . . . . . . 8 (((𝑀 + 𝑁) ∈ (ℤ‘(𝐼𝐶)) ∧ (𝐼𝐶) ∈ (ℤ𝐽)) → (𝑀 + 𝑁) ∈ (ℤ𝐽))
2319, 21, 22syl2anc 580 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝑀 + 𝑁) ∈ (ℤ𝐽))
24 fzss2 12631 . . . . . . 7 ((𝑀 + 𝑁) ∈ (ℤ𝐽) → (1...𝐽) ⊆ (1...(𝑀 + 𝑁)))
2523, 24syl 17 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (1...𝐽) ⊆ (1...(𝑀 + 𝑁)))
26 ssinss1 4035 . . . . . 6 ((1...𝐽) ⊆ (1...(𝑀 + 𝑁)) → ((1...𝐽) ∩ (𝑅𝐶)) ⊆ (1...(𝑀 + 𝑁)))
2725, 26syl 17 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((1...𝐽) ∩ (𝑅𝐶)) ⊆ (1...(𝑀 + 𝑁)))
28 f1ores 6368 . . . . 5 (((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁)) ∧ ((1...𝐽) ∩ (𝑅𝐶)) ⊆ (1...(𝑀 + 𝑁))) → ((𝑆𝐶) ↾ ((1...𝐽) ∩ (𝑅𝐶))):((1...𝐽) ∩ (𝑅𝐶))–1-1-onto→((𝑆𝐶) “ ((1...𝐽) ∩ (𝑅𝐶))))
2914, 27, 28syl2anc 580 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶) ↾ ((1...𝐽) ∩ (𝑅𝐶))):((1...𝐽) ∩ (𝑅𝐶))–1-1-onto→((𝑆𝐶) “ ((1...𝐽) ∩ (𝑅𝐶))))
30 ovex 6908 . . . . . 6 (1...𝐽) ∈ V
3130inex1 4992 . . . . 5 ((1...𝐽) ∩ (𝑅𝐶)) ∈ V
3231f1oen 8214 . . . 4 (((𝑆𝐶) ↾ ((1...𝐽) ∩ (𝑅𝐶))):((1...𝐽) ∩ (𝑅𝐶))–1-1-onto→((𝑆𝐶) “ ((1...𝐽) ∩ (𝑅𝐶))) → ((1...𝐽) ∩ (𝑅𝐶)) ≈ ((𝑆𝐶) “ ((1...𝐽) ∩ (𝑅𝐶))))
33 hasheni 13384 . . . 4 (((1...𝐽) ∩ (𝑅𝐶)) ≈ ((𝑆𝐶) “ ((1...𝐽) ∩ (𝑅𝐶))) → (♯‘((1...𝐽) ∩ (𝑅𝐶))) = (♯‘((𝑆𝐶) “ ((1...𝐽) ∩ (𝑅𝐶)))))
3429, 32, 333syl 18 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (♯‘((1...𝐽) ∩ (𝑅𝐶))) = (♯‘((𝑆𝐶) “ ((1...𝐽) ∩ (𝑅𝐶)))))
3525ssdifssd 3944 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((1...𝐽) ∖ (𝑅𝐶)) ⊆ (1...(𝑀 + 𝑁)))
36 f1ores 6368 . . . . 5 (((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁)) ∧ ((1...𝐽) ∖ (𝑅𝐶)) ⊆ (1...(𝑀 + 𝑁))) → ((𝑆𝐶) ↾ ((1...𝐽) ∖ (𝑅𝐶))):((1...𝐽) ∖ (𝑅𝐶))–1-1-onto→((𝑆𝐶) “ ((1...𝐽) ∖ (𝑅𝐶))))
3714, 35, 36syl2anc 580 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶) ↾ ((1...𝐽) ∖ (𝑅𝐶))):((1...𝐽) ∖ (𝑅𝐶))–1-1-onto→((𝑆𝐶) “ ((1...𝐽) ∖ (𝑅𝐶))))
38 difexg 5001 . . . . . 6 ((1...𝐽) ∈ V → ((1...𝐽) ∖ (𝑅𝐶)) ∈ V)
3930, 38ax-mp 5 . . . . 5 ((1...𝐽) ∖ (𝑅𝐶)) ∈ V
4039f1oen 8214 . . . 4 (((𝑆𝐶) ↾ ((1...𝐽) ∖ (𝑅𝐶))):((1...𝐽) ∖ (𝑅𝐶))–1-1-onto→((𝑆𝐶) “ ((1...𝐽) ∖ (𝑅𝐶))) → ((1...𝐽) ∖ (𝑅𝐶)) ≈ ((𝑆𝐶) “ ((1...𝐽) ∖ (𝑅𝐶))))
41 hasheni 13384 . . . 4 (((1...𝐽) ∖ (𝑅𝐶)) ≈ ((𝑆𝐶) “ ((1...𝐽) ∖ (𝑅𝐶))) → (♯‘((1...𝐽) ∖ (𝑅𝐶))) = (♯‘((𝑆𝐶) “ ((1...𝐽) ∖ (𝑅𝐶)))))
4237, 40, 413syl 18 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (♯‘((1...𝐽) ∖ (𝑅𝐶))) = (♯‘((𝑆𝐶) “ ((1...𝐽) ∖ (𝑅𝐶)))))
4334, 42oveq12d 6894 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((♯‘((1...𝐽) ∩ (𝑅𝐶))) − (♯‘((1...𝐽) ∖ (𝑅𝐶)))) = ((♯‘((𝑆𝐶) “ ((1...𝐽) ∩ (𝑅𝐶)))) − (♯‘((𝑆𝐶) “ ((1...𝐽) ∖ (𝑅𝐶))))))
44 ballotth.r . . . . 5 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
451, 2, 3, 4, 5, 6, 7, 8, 9, 44ballotlemro 31093 . . . 4 (𝐶 ∈ (𝑂𝐸) → (𝑅𝐶) ∈ 𝑂)
4645adantr 473 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝑅𝐶) ∈ 𝑂)
47 elfzelz 12592 . . . 4 (𝐽 ∈ (1...(𝐼𝐶)) → 𝐽 ∈ ℤ)
4847adantl 474 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐽 ∈ ℤ)
491, 2, 3, 4, 5, 46, 48ballotlemfval 31060 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹‘(𝑅𝐶))‘𝐽) = ((♯‘((1...𝐽) ∩ (𝑅𝐶))) − (♯‘((1...𝐽) ∖ (𝑅𝐶)))))
50 fzfi 13022 . . . . 5 (1...(𝑀 + 𝑁)) ∈ Fin
51 eldifi 3928 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → 𝐶𝑂)
521, 2, 3ballotlemelo 31058 . . . . . . . 8 (𝐶𝑂 ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀))
5352simplbi 492 . . . . . . 7 (𝐶𝑂𝐶 ⊆ (1...(𝑀 + 𝑁)))
5451, 53syl 17 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → 𝐶 ⊆ (1...(𝑀 + 𝑁)))
5554adantr 473 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐶 ⊆ (1...(𝑀 + 𝑁)))
56 ssfi 8420 . . . . 5 (((1...(𝑀 + 𝑁)) ∈ Fin ∧ 𝐶 ⊆ (1...(𝑀 + 𝑁))) → 𝐶 ∈ Fin)
5750, 55, 56sylancr 582 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐶 ∈ Fin)
58 fzfid 13023 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ∈ Fin)
59 ballotlemg . . . . 5 = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣𝑢)) − (♯‘(𝑣𝑢))))
601, 2, 3, 4, 5, 6, 7, 8, 9, 44, 59ballotlemgval 31094 . . . 4 ((𝐶 ∈ Fin ∧ (((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ∈ Fin) → (𝐶 (((𝑆𝐶)‘𝐽)...(𝐼𝐶))) = ((♯‘((((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ∩ 𝐶)) − (♯‘((((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ∖ 𝐶))))
6157, 58, 60syl2anc 580 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐶 (((𝑆𝐶)‘𝐽)...(𝐼𝐶))) = ((♯‘((((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ∩ 𝐶)) − (♯‘((((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ∖ 𝐶))))
62 dff1o3 6360 . . . . . . . . 9 ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ↔ ((𝑆𝐶):(1...(𝑀 + 𝑁))–onto→(1...(𝑀 + 𝑁)) ∧ Fun (𝑆𝐶)))
6362simprbi 491 . . . . . . . 8 ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) → Fun (𝑆𝐶))
64 imain 6183 . . . . . . . 8 (Fun (𝑆𝐶) → ((𝑆𝐶) “ ((1...𝐽) ∩ (𝑅𝐶))) = (((𝑆𝐶) “ (1...𝐽)) ∩ ((𝑆𝐶) “ (𝑅𝐶))))
6511, 63, 643syl 18 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶) “ ((1...𝐽) ∩ (𝑅𝐶))) = (((𝑆𝐶) “ (1...𝐽)) ∩ ((𝑆𝐶) “ (𝑅𝐶))))
6665adantr 473 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶) “ ((1...𝐽) ∩ (𝑅𝐶))) = (((𝑆𝐶) “ (1...𝐽)) ∩ ((𝑆𝐶) “ (𝑅𝐶))))
671, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsima 31086 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶) “ (1...𝐽)) = (((𝑆𝐶)‘𝐽)...(𝐼𝐶)))
681, 2, 3, 4, 5, 6, 7, 8, 9, 44ballotlemscr 31089 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶) “ (𝑅𝐶)) = 𝐶)
6968adantr 473 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶) “ (𝑅𝐶)) = 𝐶)
7067, 69ineq12d 4011 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝑆𝐶) “ (1...𝐽)) ∩ ((𝑆𝐶) “ (𝑅𝐶))) = ((((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ∩ 𝐶))
7166, 70eqtrd 2831 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶) “ ((1...𝐽) ∩ (𝑅𝐶))) = ((((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ∩ 𝐶))
7271fveq2d 6413 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (♯‘((𝑆𝐶) “ ((1...𝐽) ∩ (𝑅𝐶)))) = (♯‘((((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ∩ 𝐶)))
73 imadif 6182 . . . . . . . 8 (Fun (𝑆𝐶) → ((𝑆𝐶) “ ((1...𝐽) ∖ (𝑅𝐶))) = (((𝑆𝐶) “ (1...𝐽)) ∖ ((𝑆𝐶) “ (𝑅𝐶))))
7411, 63, 733syl 18 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶) “ ((1...𝐽) ∖ (𝑅𝐶))) = (((𝑆𝐶) “ (1...𝐽)) ∖ ((𝑆𝐶) “ (𝑅𝐶))))
7574adantr 473 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶) “ ((1...𝐽) ∖ (𝑅𝐶))) = (((𝑆𝐶) “ (1...𝐽)) ∖ ((𝑆𝐶) “ (𝑅𝐶))))
7667, 69difeq12d 3925 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝑆𝐶) “ (1...𝐽)) ∖ ((𝑆𝐶) “ (𝑅𝐶))) = ((((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ∖ 𝐶))
7775, 76eqtrd 2831 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶) “ ((1...𝐽) ∖ (𝑅𝐶))) = ((((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ∖ 𝐶))
7877fveq2d 6413 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (♯‘((𝑆𝐶) “ ((1...𝐽) ∖ (𝑅𝐶)))) = (♯‘((((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ∖ 𝐶)))
7972, 78oveq12d 6894 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((♯‘((𝑆𝐶) “ ((1...𝐽) ∩ (𝑅𝐶)))) − (♯‘((𝑆𝐶) “ ((1...𝐽) ∖ (𝑅𝐶))))) = ((♯‘((((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ∩ 𝐶)) − (♯‘((((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ∖ 𝐶))))
8061, 79eqtr4d 2834 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐶 (((𝑆𝐶)‘𝐽)...(𝐼𝐶))) = ((♯‘((𝑆𝐶) “ ((1...𝐽) ∩ (𝑅𝐶)))) − (♯‘((𝑆𝐶) “ ((1...𝐽) ∖ (𝑅𝐶))))))
8143, 49, 803eqtr4d 2841 1 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹‘(𝑅𝐶))‘𝐽) = (𝐶 (((𝑆𝐶)‘𝐽)...(𝐼𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  wral 3087  {crab 3091  Vcvv 3383  cdif 3764  cin 3766  wss 3767  ifcif 4275  𝒫 cpw 4347   class class class wbr 4841  cmpt 4920  ccnv 5309  cres 5312  cima 5313  Fun wfun 6093  1-1wf1 6096  ontowfo 6097  1-1-ontowf1o 6098  cfv 6099  (class class class)co 6876  cmpt2 6878  cen 8190  Fincfn 8193  infcinf 8587  cr 10221  0cc0 10222  1c1 10223   + caddc 10225   < clt 10361  cle 10362  cmin 10554   / cdiv 10974  cn 11310  cz 11662  cuz 11926  ...cfz 12576  chash 13366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rmo 3095  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-int 4666  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-om 7298  df-1st 7399  df-2nd 7400  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-1o 7797  df-oadd 7801  df-er 7980  df-en 8194  df-dom 8195  df-sdom 8196  df-fin 8197  df-sup 8588  df-inf 8589  df-card 9049  df-cda 9276  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-nn 11311  df-2 11372  df-n0 11577  df-z 11663  df-uz 11927  df-rp 12071  df-fz 12577  df-hash 13367
This theorem is referenced by:  ballotlemfrci  31098  ballotlemfrceq  31099
  Copyright terms: Public domain W3C validator