Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfrc Structured version   Visualization version   GIF version

Theorem ballotlemfrc 32393
Description: Express the value of (𝐹‘(𝑅𝐶)) in terms of the newly defined . (Contributed by Thierry Arnoux, 21-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
ballotth.r 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
ballotlemg = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣𝑢)) − (♯‘(𝑣𝑢))))
Assertion
Ref Expression
ballotlemfrc ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹‘(𝑅𝐶))‘𝐽) = (𝐶 (((𝑆𝐶)‘𝐽)...(𝐼𝐶))))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐   𝑘,𝐽   𝑆,𝑘,𝑖,𝑐   𝑅,𝑖   𝑣,𝑢,𝐶   𝑢,𝐼,𝑣   𝑢,𝐽,𝑣   𝑢,𝑅,𝑣   𝑢,𝑆,𝑣   𝑖,𝐽
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑣,𝑢,𝑖,𝑘,𝑐)   𝑅(𝑥,𝑘,𝑐)   𝑆(𝑥)   𝐸(𝑥,𝑣,𝑢)   (𝑥,𝑣,𝑢,𝑖,𝑘,𝑐)   𝐹(𝑥,𝑣,𝑢)   𝐼(𝑥)   𝐽(𝑥,𝑐)   𝑀(𝑥,𝑣,𝑢)   𝑁(𝑥,𝑣,𝑢)   𝑂(𝑥,𝑣,𝑢)

Proof of Theorem ballotlemfrc
StepHypRef Expression
1 ballotth.m . . . . . . . . 9 𝑀 ∈ ℕ
2 ballotth.n . . . . . . . . 9 𝑁 ∈ ℕ
3 ballotth.o . . . . . . . . 9 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
4 ballotth.p . . . . . . . . 9 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
5 ballotth.f . . . . . . . . 9 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
6 ballotth.e . . . . . . . . 9 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
7 ballotth.mgtn . . . . . . . . 9 𝑁 < 𝑀
8 ballotth.i . . . . . . . . 9 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
9 ballotth.s . . . . . . . . 9 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
101, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsf1o 32380 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ∧ (𝑆𝐶) = (𝑆𝐶)))
1110simpld 494 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)))
12 f1of1 6699 . . . . . . 7 ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) → (𝑆𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁)))
1311, 12syl 17 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → (𝑆𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁)))
1413adantr 480 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝑆𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁)))
151, 2, 3, 4, 5, 6, 7, 8ballotlemiex 32368 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
1615simpld 494 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
1716adantr 480 . . . . . . . . 9 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
18 elfzuz3 13182 . . . . . . . . 9 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝑀 + 𝑁) ∈ (ℤ‘(𝐼𝐶)))
1917, 18syl 17 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝑀 + 𝑁) ∈ (ℤ‘(𝐼𝐶)))
20 elfzuz3 13182 . . . . . . . . 9 (𝐽 ∈ (1...(𝐼𝐶)) → (𝐼𝐶) ∈ (ℤ𝐽))
2120adantl 481 . . . . . . . 8 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐼𝐶) ∈ (ℤ𝐽))
22 uztrn 12529 . . . . . . . 8 (((𝑀 + 𝑁) ∈ (ℤ‘(𝐼𝐶)) ∧ (𝐼𝐶) ∈ (ℤ𝐽)) → (𝑀 + 𝑁) ∈ (ℤ𝐽))
2319, 21, 22syl2anc 583 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝑀 + 𝑁) ∈ (ℤ𝐽))
24 fzss2 13225 . . . . . . 7 ((𝑀 + 𝑁) ∈ (ℤ𝐽) → (1...𝐽) ⊆ (1...(𝑀 + 𝑁)))
2523, 24syl 17 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (1...𝐽) ⊆ (1...(𝑀 + 𝑁)))
26 ssinss1 4168 . . . . . 6 ((1...𝐽) ⊆ (1...(𝑀 + 𝑁)) → ((1...𝐽) ∩ (𝑅𝐶)) ⊆ (1...(𝑀 + 𝑁)))
2725, 26syl 17 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((1...𝐽) ∩ (𝑅𝐶)) ⊆ (1...(𝑀 + 𝑁)))
28 f1ores 6714 . . . . 5 (((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁)) ∧ ((1...𝐽) ∩ (𝑅𝐶)) ⊆ (1...(𝑀 + 𝑁))) → ((𝑆𝐶) ↾ ((1...𝐽) ∩ (𝑅𝐶))):((1...𝐽) ∩ (𝑅𝐶))–1-1-onto→((𝑆𝐶) “ ((1...𝐽) ∩ (𝑅𝐶))))
2914, 27, 28syl2anc 583 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶) ↾ ((1...𝐽) ∩ (𝑅𝐶))):((1...𝐽) ∩ (𝑅𝐶))–1-1-onto→((𝑆𝐶) “ ((1...𝐽) ∩ (𝑅𝐶))))
30 ovex 7288 . . . . . 6 (1...𝐽) ∈ V
3130inex1 5236 . . . . 5 ((1...𝐽) ∩ (𝑅𝐶)) ∈ V
3231f1oen 8716 . . . 4 (((𝑆𝐶) ↾ ((1...𝐽) ∩ (𝑅𝐶))):((1...𝐽) ∩ (𝑅𝐶))–1-1-onto→((𝑆𝐶) “ ((1...𝐽) ∩ (𝑅𝐶))) → ((1...𝐽) ∩ (𝑅𝐶)) ≈ ((𝑆𝐶) “ ((1...𝐽) ∩ (𝑅𝐶))))
33 hasheni 13990 . . . 4 (((1...𝐽) ∩ (𝑅𝐶)) ≈ ((𝑆𝐶) “ ((1...𝐽) ∩ (𝑅𝐶))) → (♯‘((1...𝐽) ∩ (𝑅𝐶))) = (♯‘((𝑆𝐶) “ ((1...𝐽) ∩ (𝑅𝐶)))))
3429, 32, 333syl 18 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (♯‘((1...𝐽) ∩ (𝑅𝐶))) = (♯‘((𝑆𝐶) “ ((1...𝐽) ∩ (𝑅𝐶)))))
3525ssdifssd 4073 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((1...𝐽) ∖ (𝑅𝐶)) ⊆ (1...(𝑀 + 𝑁)))
36 f1ores 6714 . . . . 5 (((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁)) ∧ ((1...𝐽) ∖ (𝑅𝐶)) ⊆ (1...(𝑀 + 𝑁))) → ((𝑆𝐶) ↾ ((1...𝐽) ∖ (𝑅𝐶))):((1...𝐽) ∖ (𝑅𝐶))–1-1-onto→((𝑆𝐶) “ ((1...𝐽) ∖ (𝑅𝐶))))
3714, 35, 36syl2anc 583 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶) ↾ ((1...𝐽) ∖ (𝑅𝐶))):((1...𝐽) ∖ (𝑅𝐶))–1-1-onto→((𝑆𝐶) “ ((1...𝐽) ∖ (𝑅𝐶))))
38 difexg 5246 . . . . . 6 ((1...𝐽) ∈ V → ((1...𝐽) ∖ (𝑅𝐶)) ∈ V)
3930, 38ax-mp 5 . . . . 5 ((1...𝐽) ∖ (𝑅𝐶)) ∈ V
4039f1oen 8716 . . . 4 (((𝑆𝐶) ↾ ((1...𝐽) ∖ (𝑅𝐶))):((1...𝐽) ∖ (𝑅𝐶))–1-1-onto→((𝑆𝐶) “ ((1...𝐽) ∖ (𝑅𝐶))) → ((1...𝐽) ∖ (𝑅𝐶)) ≈ ((𝑆𝐶) “ ((1...𝐽) ∖ (𝑅𝐶))))
41 hasheni 13990 . . . 4 (((1...𝐽) ∖ (𝑅𝐶)) ≈ ((𝑆𝐶) “ ((1...𝐽) ∖ (𝑅𝐶))) → (♯‘((1...𝐽) ∖ (𝑅𝐶))) = (♯‘((𝑆𝐶) “ ((1...𝐽) ∖ (𝑅𝐶)))))
4237, 40, 413syl 18 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (♯‘((1...𝐽) ∖ (𝑅𝐶))) = (♯‘((𝑆𝐶) “ ((1...𝐽) ∖ (𝑅𝐶)))))
4334, 42oveq12d 7273 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((♯‘((1...𝐽) ∩ (𝑅𝐶))) − (♯‘((1...𝐽) ∖ (𝑅𝐶)))) = ((♯‘((𝑆𝐶) “ ((1...𝐽) ∩ (𝑅𝐶)))) − (♯‘((𝑆𝐶) “ ((1...𝐽) ∖ (𝑅𝐶))))))
44 ballotth.r . . . . 5 𝑅 = (𝑐 ∈ (𝑂𝐸) ↦ ((𝑆𝑐) “ 𝑐))
451, 2, 3, 4, 5, 6, 7, 8, 9, 44ballotlemro 32389 . . . 4 (𝐶 ∈ (𝑂𝐸) → (𝑅𝐶) ∈ 𝑂)
4645adantr 480 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝑅𝐶) ∈ 𝑂)
47 elfzelz 13185 . . . 4 (𝐽 ∈ (1...(𝐼𝐶)) → 𝐽 ∈ ℤ)
4847adantl 481 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐽 ∈ ℤ)
491, 2, 3, 4, 5, 46, 48ballotlemfval 32356 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹‘(𝑅𝐶))‘𝐽) = ((♯‘((1...𝐽) ∩ (𝑅𝐶))) − (♯‘((1...𝐽) ∖ (𝑅𝐶)))))
50 fzfi 13620 . . . . 5 (1...(𝑀 + 𝑁)) ∈ Fin
51 eldifi 4057 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → 𝐶𝑂)
521, 2, 3ballotlemelo 32354 . . . . . . . 8 (𝐶𝑂 ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀))
5352simplbi 497 . . . . . . 7 (𝐶𝑂𝐶 ⊆ (1...(𝑀 + 𝑁)))
5451, 53syl 17 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → 𝐶 ⊆ (1...(𝑀 + 𝑁)))
5554adantr 480 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐶 ⊆ (1...(𝑀 + 𝑁)))
56 ssfi 8918 . . . . 5 (((1...(𝑀 + 𝑁)) ∈ Fin ∧ 𝐶 ⊆ (1...(𝑀 + 𝑁))) → 𝐶 ∈ Fin)
5750, 55, 56sylancr 586 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → 𝐶 ∈ Fin)
58 fzfid 13621 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ∈ Fin)
59 ballotlemg . . . . 5 = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣𝑢)) − (♯‘(𝑣𝑢))))
601, 2, 3, 4, 5, 6, 7, 8, 9, 44, 59ballotlemgval 32390 . . . 4 ((𝐶 ∈ Fin ∧ (((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ∈ Fin) → (𝐶 (((𝑆𝐶)‘𝐽)...(𝐼𝐶))) = ((♯‘((((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ∩ 𝐶)) − (♯‘((((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ∖ 𝐶))))
6157, 58, 60syl2anc 583 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐶 (((𝑆𝐶)‘𝐽)...(𝐼𝐶))) = ((♯‘((((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ∩ 𝐶)) − (♯‘((((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ∖ 𝐶))))
62 dff1o3 6706 . . . . . . . . 9 ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ↔ ((𝑆𝐶):(1...(𝑀 + 𝑁))–onto→(1...(𝑀 + 𝑁)) ∧ Fun (𝑆𝐶)))
6362simprbi 496 . . . . . . . 8 ((𝑆𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) → Fun (𝑆𝐶))
64 imain 6503 . . . . . . . 8 (Fun (𝑆𝐶) → ((𝑆𝐶) “ ((1...𝐽) ∩ (𝑅𝐶))) = (((𝑆𝐶) “ (1...𝐽)) ∩ ((𝑆𝐶) “ (𝑅𝐶))))
6511, 63, 643syl 18 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶) “ ((1...𝐽) ∩ (𝑅𝐶))) = (((𝑆𝐶) “ (1...𝐽)) ∩ ((𝑆𝐶) “ (𝑅𝐶))))
6665adantr 480 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶) “ ((1...𝐽) ∩ (𝑅𝐶))) = (((𝑆𝐶) “ (1...𝐽)) ∩ ((𝑆𝐶) “ (𝑅𝐶))))
671, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsima 32382 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶) “ (1...𝐽)) = (((𝑆𝐶)‘𝐽)...(𝐼𝐶)))
681, 2, 3, 4, 5, 6, 7, 8, 9, 44ballotlemscr 32385 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶) “ (𝑅𝐶)) = 𝐶)
6968adantr 480 . . . . . . 7 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶) “ (𝑅𝐶)) = 𝐶)
7067, 69ineq12d 4144 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝑆𝐶) “ (1...𝐽)) ∩ ((𝑆𝐶) “ (𝑅𝐶))) = ((((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ∩ 𝐶))
7166, 70eqtrd 2778 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶) “ ((1...𝐽) ∩ (𝑅𝐶))) = ((((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ∩ 𝐶))
7271fveq2d 6760 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (♯‘((𝑆𝐶) “ ((1...𝐽) ∩ (𝑅𝐶)))) = (♯‘((((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ∩ 𝐶)))
73 imadif 6502 . . . . . . . 8 (Fun (𝑆𝐶) → ((𝑆𝐶) “ ((1...𝐽) ∖ (𝑅𝐶))) = (((𝑆𝐶) “ (1...𝐽)) ∖ ((𝑆𝐶) “ (𝑅𝐶))))
7411, 63, 733syl 18 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → ((𝑆𝐶) “ ((1...𝐽) ∖ (𝑅𝐶))) = (((𝑆𝐶) “ (1...𝐽)) ∖ ((𝑆𝐶) “ (𝑅𝐶))))
7574adantr 480 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶) “ ((1...𝐽) ∖ (𝑅𝐶))) = (((𝑆𝐶) “ (1...𝐽)) ∖ ((𝑆𝐶) “ (𝑅𝐶))))
7667, 69difeq12d 4054 . . . . . 6 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (((𝑆𝐶) “ (1...𝐽)) ∖ ((𝑆𝐶) “ (𝑅𝐶))) = ((((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ∖ 𝐶))
7775, 76eqtrd 2778 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝑆𝐶) “ ((1...𝐽) ∖ (𝑅𝐶))) = ((((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ∖ 𝐶))
7877fveq2d 6760 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (♯‘((𝑆𝐶) “ ((1...𝐽) ∖ (𝑅𝐶)))) = (♯‘((((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ∖ 𝐶)))
7972, 78oveq12d 7273 . . 3 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((♯‘((𝑆𝐶) “ ((1...𝐽) ∩ (𝑅𝐶)))) − (♯‘((𝑆𝐶) “ ((1...𝐽) ∖ (𝑅𝐶))))) = ((♯‘((((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ∩ 𝐶)) − (♯‘((((𝑆𝐶)‘𝐽)...(𝐼𝐶)) ∖ 𝐶))))
8061, 79eqtr4d 2781 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → (𝐶 (((𝑆𝐶)‘𝐽)...(𝐼𝐶))) = ((♯‘((𝑆𝐶) “ ((1...𝐽) ∩ (𝑅𝐶)))) − (♯‘((𝑆𝐶) “ ((1...𝐽) ∖ (𝑅𝐶))))))
8143, 49, 803eqtr4d 2788 1 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝐼𝐶))) → ((𝐹‘(𝑅𝐶))‘𝐽) = (𝐶 (((𝑆𝐶)‘𝐽)...(𝐼𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  {crab 3067  Vcvv 3422  cdif 3880  cin 3882  wss 3883  ifcif 4456  𝒫 cpw 4530   class class class wbr 5070  cmpt 5153  ccnv 5579  cres 5582  cima 5583  Fun wfun 6412  1-1wf1 6415  ontowfo 6416  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  cmpo 7257  cen 8688  Fincfn 8691  infcinf 9130  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  cz 12249  cuz 12511  ...cfz 13168  chash 13972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-hash 13973
This theorem is referenced by:  ballotlemfrci  32394  ballotlemfrceq  32395
  Copyright terms: Public domain W3C validator