Proof of Theorem ballotlemfrc
Step | Hyp | Ref
| Expression |
1 | | ballotth.m |
. . . . . . . . 9
⊢ 𝑀 ∈ ℕ |
2 | | ballotth.n |
. . . . . . . . 9
⊢ 𝑁 ∈ ℕ |
3 | | ballotth.o |
. . . . . . . . 9
⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
4 | | ballotth.p |
. . . . . . . . 9
⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
5 | | ballotth.f |
. . . . . . . . 9
⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦
((♯‘((1...𝑖)
∩ 𝑐)) −
(♯‘((1...𝑖)
∖ 𝑐))))) |
6 | | ballotth.e |
. . . . . . . . 9
⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
7 | | ballotth.mgtn |
. . . . . . . . 9
⊢ 𝑁 < 𝑀 |
8 | | ballotth.i |
. . . . . . . . 9
⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
9 | | ballotth.s |
. . . . . . . . 9
⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ballotlemsf1o 32380 |
. . . . . . . 8
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ∧ ◡(𝑆‘𝐶) = (𝑆‘𝐶))) |
11 | 10 | simpld 494 |
. . . . . . 7
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁))) |
12 | | f1of1 6699 |
. . . . . . 7
⊢ ((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) → (𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁))) |
13 | 11, 12 | syl 17 |
. . . . . 6
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁))) |
14 | 13 | adantr 480 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁))) |
15 | 1, 2, 3, 4, 5, 6, 7, 8 | ballotlemiex 32368 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0)) |
16 | 15 | simpld 494 |
. . . . . . . . . 10
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁))) |
17 | 16 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁))) |
18 | | elfzuz3 13182 |
. . . . . . . . 9
⊢ ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝑀 + 𝑁) ∈
(ℤ≥‘(𝐼‘𝐶))) |
19 | 17, 18 | syl 17 |
. . . . . . . 8
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝑀 + 𝑁) ∈
(ℤ≥‘(𝐼‘𝐶))) |
20 | | elfzuz3 13182 |
. . . . . . . . 9
⊢ (𝐽 ∈ (1...(𝐼‘𝐶)) → (𝐼‘𝐶) ∈ (ℤ≥‘𝐽)) |
21 | 20 | adantl 481 |
. . . . . . . 8
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝐼‘𝐶) ∈ (ℤ≥‘𝐽)) |
22 | | uztrn 12529 |
. . . . . . . 8
⊢ (((𝑀 + 𝑁) ∈
(ℤ≥‘(𝐼‘𝐶)) ∧ (𝐼‘𝐶) ∈ (ℤ≥‘𝐽)) → (𝑀 + 𝑁) ∈ (ℤ≥‘𝐽)) |
23 | 19, 21, 22 | syl2anc 583 |
. . . . . . 7
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝑀 + 𝑁) ∈ (ℤ≥‘𝐽)) |
24 | | fzss2 13225 |
. . . . . . 7
⊢ ((𝑀 + 𝑁) ∈ (ℤ≥‘𝐽) → (1...𝐽) ⊆ (1...(𝑀 + 𝑁))) |
25 | 23, 24 | syl 17 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (1...𝐽) ⊆ (1...(𝑀 + 𝑁))) |
26 | | ssinss1 4168 |
. . . . . 6
⊢
((1...𝐽) ⊆
(1...(𝑀 + 𝑁)) → ((1...𝐽) ∩ (𝑅‘𝐶)) ⊆ (1...(𝑀 + 𝑁))) |
27 | 25, 26 | syl 17 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((1...𝐽) ∩ (𝑅‘𝐶)) ⊆ (1...(𝑀 + 𝑁))) |
28 | | f1ores 6714 |
. . . . 5
⊢ (((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁)) ∧ ((1...𝐽) ∩ (𝑅‘𝐶)) ⊆ (1...(𝑀 + 𝑁))) → ((𝑆‘𝐶) ↾ ((1...𝐽) ∩ (𝑅‘𝐶))):((1...𝐽) ∩ (𝑅‘𝐶))–1-1-onto→((𝑆‘𝐶) “ ((1...𝐽) ∩ (𝑅‘𝐶)))) |
29 | 14, 27, 28 | syl2anc 583 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶) ↾ ((1...𝐽) ∩ (𝑅‘𝐶))):((1...𝐽) ∩ (𝑅‘𝐶))–1-1-onto→((𝑆‘𝐶) “ ((1...𝐽) ∩ (𝑅‘𝐶)))) |
30 | | ovex 7288 |
. . . . . 6
⊢
(1...𝐽) ∈
V |
31 | 30 | inex1 5236 |
. . . . 5
⊢
((1...𝐽) ∩
(𝑅‘𝐶)) ∈ V |
32 | 31 | f1oen 8716 |
. . . 4
⊢ (((𝑆‘𝐶) ↾ ((1...𝐽) ∩ (𝑅‘𝐶))):((1...𝐽) ∩ (𝑅‘𝐶))–1-1-onto→((𝑆‘𝐶) “ ((1...𝐽) ∩ (𝑅‘𝐶))) → ((1...𝐽) ∩ (𝑅‘𝐶)) ≈ ((𝑆‘𝐶) “ ((1...𝐽) ∩ (𝑅‘𝐶)))) |
33 | | hasheni 13990 |
. . . 4
⊢
(((1...𝐽) ∩
(𝑅‘𝐶)) ≈ ((𝑆‘𝐶) “ ((1...𝐽) ∩ (𝑅‘𝐶))) → (♯‘((1...𝐽) ∩ (𝑅‘𝐶))) = (♯‘((𝑆‘𝐶) “ ((1...𝐽) ∩ (𝑅‘𝐶))))) |
34 | 29, 32, 33 | 3syl 18 |
. . 3
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (♯‘((1...𝐽) ∩ (𝑅‘𝐶))) = (♯‘((𝑆‘𝐶) “ ((1...𝐽) ∩ (𝑅‘𝐶))))) |
35 | 25 | ssdifssd 4073 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((1...𝐽) ∖ (𝑅‘𝐶)) ⊆ (1...(𝑀 + 𝑁))) |
36 | | f1ores 6714 |
. . . . 5
⊢ (((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1→(1...(𝑀 + 𝑁)) ∧ ((1...𝐽) ∖ (𝑅‘𝐶)) ⊆ (1...(𝑀 + 𝑁))) → ((𝑆‘𝐶) ↾ ((1...𝐽) ∖ (𝑅‘𝐶))):((1...𝐽) ∖ (𝑅‘𝐶))–1-1-onto→((𝑆‘𝐶) “ ((1...𝐽) ∖ (𝑅‘𝐶)))) |
37 | 14, 35, 36 | syl2anc 583 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶) ↾ ((1...𝐽) ∖ (𝑅‘𝐶))):((1...𝐽) ∖ (𝑅‘𝐶))–1-1-onto→((𝑆‘𝐶) “ ((1...𝐽) ∖ (𝑅‘𝐶)))) |
38 | | difexg 5246 |
. . . . . 6
⊢
((1...𝐽) ∈ V
→ ((1...𝐽) ∖
(𝑅‘𝐶)) ∈ V) |
39 | 30, 38 | ax-mp 5 |
. . . . 5
⊢
((1...𝐽) ∖
(𝑅‘𝐶)) ∈ V |
40 | 39 | f1oen 8716 |
. . . 4
⊢ (((𝑆‘𝐶) ↾ ((1...𝐽) ∖ (𝑅‘𝐶))):((1...𝐽) ∖ (𝑅‘𝐶))–1-1-onto→((𝑆‘𝐶) “ ((1...𝐽) ∖ (𝑅‘𝐶))) → ((1...𝐽) ∖ (𝑅‘𝐶)) ≈ ((𝑆‘𝐶) “ ((1...𝐽) ∖ (𝑅‘𝐶)))) |
41 | | hasheni 13990 |
. . . 4
⊢
(((1...𝐽) ∖
(𝑅‘𝐶)) ≈ ((𝑆‘𝐶) “ ((1...𝐽) ∖ (𝑅‘𝐶))) → (♯‘((1...𝐽) ∖ (𝑅‘𝐶))) = (♯‘((𝑆‘𝐶) “ ((1...𝐽) ∖ (𝑅‘𝐶))))) |
42 | 37, 40, 41 | 3syl 18 |
. . 3
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (♯‘((1...𝐽) ∖ (𝑅‘𝐶))) = (♯‘((𝑆‘𝐶) “ ((1...𝐽) ∖ (𝑅‘𝐶))))) |
43 | 34, 42 | oveq12d 7273 |
. 2
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((♯‘((1...𝐽) ∩ (𝑅‘𝐶))) − (♯‘((1...𝐽) ∖ (𝑅‘𝐶)))) = ((♯‘((𝑆‘𝐶) “ ((1...𝐽) ∩ (𝑅‘𝐶)))) − (♯‘((𝑆‘𝐶) “ ((1...𝐽) ∖ (𝑅‘𝐶)))))) |
44 | | ballotth.r |
. . . . 5
⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
45 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 44 | ballotlemro 32389 |
. . . 4
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) ∈ 𝑂) |
46 | 45 | adantr 480 |
. . 3
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝑅‘𝐶) ∈ 𝑂) |
47 | | elfzelz 13185 |
. . . 4
⊢ (𝐽 ∈ (1...(𝐼‘𝐶)) → 𝐽 ∈ ℤ) |
48 | 47 | adantl 481 |
. . 3
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 𝐽 ∈ ℤ) |
49 | 1, 2, 3, 4, 5, 46,
48 | ballotlemfval 32356 |
. 2
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝐹‘(𝑅‘𝐶))‘𝐽) = ((♯‘((1...𝐽) ∩ (𝑅‘𝐶))) − (♯‘((1...𝐽) ∖ (𝑅‘𝐶))))) |
50 | | fzfi 13620 |
. . . . 5
⊢
(1...(𝑀 + 𝑁)) ∈ Fin |
51 | | eldifi 4057 |
. . . . . . 7
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 𝐶 ∈ 𝑂) |
52 | 1, 2, 3 | ballotlemelo 32354 |
. . . . . . . 8
⊢ (𝐶 ∈ 𝑂 ↔ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ∧ (♯‘𝐶) = 𝑀)) |
53 | 52 | simplbi 497 |
. . . . . . 7
⊢ (𝐶 ∈ 𝑂 → 𝐶 ⊆ (1...(𝑀 + 𝑁))) |
54 | 51, 53 | syl 17 |
. . . . . 6
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 𝐶 ⊆ (1...(𝑀 + 𝑁))) |
55 | 54 | adantr 480 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 𝐶 ⊆ (1...(𝑀 + 𝑁))) |
56 | | ssfi 8918 |
. . . . 5
⊢
(((1...(𝑀 + 𝑁)) ∈ Fin ∧ 𝐶 ⊆ (1...(𝑀 + 𝑁))) → 𝐶 ∈ Fin) |
57 | 50, 55, 56 | sylancr 586 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 𝐶 ∈ Fin) |
58 | | fzfid 13621 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)) ∈ Fin) |
59 | | ballotlemg |
. . . . 5
⊢ ↑ = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣 ∩ 𝑢)) − (♯‘(𝑣 ∖ 𝑢)))) |
60 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 44,
59 | ballotlemgval 32390 |
. . . 4
⊢ ((𝐶 ∈ Fin ∧ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)) ∈ Fin) → (𝐶 ↑ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶))) = ((♯‘((((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)) ∩ 𝐶)) − (♯‘((((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)) ∖ 𝐶)))) |
61 | 57, 58, 60 | syl2anc 583 |
. . 3
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝐶 ↑ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶))) = ((♯‘((((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)) ∩ 𝐶)) − (♯‘((((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)) ∖ 𝐶)))) |
62 | | dff1o3 6706 |
. . . . . . . . 9
⊢ ((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) ↔ ((𝑆‘𝐶):(1...(𝑀 + 𝑁))–onto→(1...(𝑀 + 𝑁)) ∧ Fun ◡(𝑆‘𝐶))) |
63 | 62 | simprbi 496 |
. . . . . . . 8
⊢ ((𝑆‘𝐶):(1...(𝑀 + 𝑁))–1-1-onto→(1...(𝑀 + 𝑁)) → Fun ◡(𝑆‘𝐶)) |
64 | | imain 6503 |
. . . . . . . 8
⊢ (Fun
◡(𝑆‘𝐶) → ((𝑆‘𝐶) “ ((1...𝐽) ∩ (𝑅‘𝐶))) = (((𝑆‘𝐶) “ (1...𝐽)) ∩ ((𝑆‘𝐶) “ (𝑅‘𝐶)))) |
65 | 11, 63, 64 | 3syl 18 |
. . . . . . 7
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝑆‘𝐶) “ ((1...𝐽) ∩ (𝑅‘𝐶))) = (((𝑆‘𝐶) “ (1...𝐽)) ∩ ((𝑆‘𝐶) “ (𝑅‘𝐶)))) |
66 | 65 | adantr 480 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶) “ ((1...𝐽) ∩ (𝑅‘𝐶))) = (((𝑆‘𝐶) “ (1...𝐽)) ∩ ((𝑆‘𝐶) “ (𝑅‘𝐶)))) |
67 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ballotlemsima 32382 |
. . . . . . 7
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶) “ (1...𝐽)) = (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶))) |
68 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 44 | ballotlemscr 32385 |
. . . . . . . 8
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝑆‘𝐶) “ (𝑅‘𝐶)) = 𝐶) |
69 | 68 | adantr 480 |
. . . . . . 7
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶) “ (𝑅‘𝐶)) = 𝐶) |
70 | 67, 69 | ineq12d 4144 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (((𝑆‘𝐶) “ (1...𝐽)) ∩ ((𝑆‘𝐶) “ (𝑅‘𝐶))) = ((((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)) ∩ 𝐶)) |
71 | 66, 70 | eqtrd 2778 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶) “ ((1...𝐽) ∩ (𝑅‘𝐶))) = ((((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)) ∩ 𝐶)) |
72 | 71 | fveq2d 6760 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (♯‘((𝑆‘𝐶) “ ((1...𝐽) ∩ (𝑅‘𝐶)))) = (♯‘((((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)) ∩ 𝐶))) |
73 | | imadif 6502 |
. . . . . . . 8
⊢ (Fun
◡(𝑆‘𝐶) → ((𝑆‘𝐶) “ ((1...𝐽) ∖ (𝑅‘𝐶))) = (((𝑆‘𝐶) “ (1...𝐽)) ∖ ((𝑆‘𝐶) “ (𝑅‘𝐶)))) |
74 | 11, 63, 73 | 3syl 18 |
. . . . . . 7
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝑆‘𝐶) “ ((1...𝐽) ∖ (𝑅‘𝐶))) = (((𝑆‘𝐶) “ (1...𝐽)) ∖ ((𝑆‘𝐶) “ (𝑅‘𝐶)))) |
75 | 74 | adantr 480 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶) “ ((1...𝐽) ∖ (𝑅‘𝐶))) = (((𝑆‘𝐶) “ (1...𝐽)) ∖ ((𝑆‘𝐶) “ (𝑅‘𝐶)))) |
76 | 67, 69 | difeq12d 4054 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (((𝑆‘𝐶) “ (1...𝐽)) ∖ ((𝑆‘𝐶) “ (𝑅‘𝐶))) = ((((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)) ∖ 𝐶)) |
77 | 75, 76 | eqtrd 2778 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶) “ ((1...𝐽) ∖ (𝑅‘𝐶))) = ((((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)) ∖ 𝐶)) |
78 | 77 | fveq2d 6760 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (♯‘((𝑆‘𝐶) “ ((1...𝐽) ∖ (𝑅‘𝐶)))) = (♯‘((((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)) ∖ 𝐶))) |
79 | 72, 78 | oveq12d 7273 |
. . 3
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((♯‘((𝑆‘𝐶) “ ((1...𝐽) ∩ (𝑅‘𝐶)))) − (♯‘((𝑆‘𝐶) “ ((1...𝐽) ∖ (𝑅‘𝐶))))) = ((♯‘((((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)) ∩ 𝐶)) − (♯‘((((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)) ∖ 𝐶)))) |
80 | 61, 79 | eqtr4d 2781 |
. 2
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝐶 ↑ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶))) = ((♯‘((𝑆‘𝐶) “ ((1...𝐽) ∩ (𝑅‘𝐶)))) − (♯‘((𝑆‘𝐶) “ ((1...𝐽) ∖ (𝑅‘𝐶)))))) |
81 | 43, 49, 80 | 3eqtr4d 2788 |
1
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝐹‘(𝑅‘𝐶))‘𝐽) = (𝐶 ↑ (((𝑆‘𝐶)‘𝐽)...(𝐼‘𝐶)))) |