MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brrelex1 Structured version   Visualization version   GIF version

Theorem brrelex1 5753
Description: If two classes are related by a binary relation, then the first class is a set. (Contributed by NM, 18-May-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
brrelex1 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ V)

Proof of Theorem brrelex1
StepHypRef Expression
1 brrelex12 5752 . 2 ((Rel 𝑅𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
21simpld 494 1 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Vcvv 3488   class class class wbr 5166  Rel wrel 5705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707
This theorem is referenced by:  brrelex1i  5756  posn  5785  frsn  5787  releldm  5969  relelrn  5970  relimasn  6114  funmo  6593  funmoOLD  6594  ertr  8778  fsuppss  9452  dirtr  18672  eqvreltr  38563  frege129d  43725  nnfoctb  44949  clim2d  45594  climfv  45612  meadjiun  46387  caragenunicl  46445
  Copyright terms: Public domain W3C validator