MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brrelex1 Structured version   Visualization version   GIF version

Theorem brrelex1 5672
Description: If two classes are related by a binary relation, then the first class is a set. (Contributed by NM, 18-May-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
brrelex1 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ V)

Proof of Theorem brrelex1
StepHypRef Expression
1 brrelex12 5671 . 2 ((Rel 𝑅𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
21simpld 494 1 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Vcvv 3436   class class class wbr 5092  Rel wrel 5624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626
This theorem is referenced by:  brrelex1i  5675  posn  5705  frsn  5707  releldm  5886  relelrn  5887  relimasn  6036  funmo  6498  ertr  8640  fsuppss  9273  dirtr  18508  eqvreltr  38604  frege129d  43756  nnfoctb  45046  clim2d  45674  climfv  45692  meadjiun  46467  caragenunicl  46525
  Copyright terms: Public domain W3C validator