![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brrelex1 | Structured version Visualization version GIF version |
Description: A true binary relation on a relation implies the first argument is a set. (This is a property of our ordered pair definition.) (Contributed by NM, 18-May-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
brrelex1 | ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brrelex12 5393 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
2 | 1 | simpld 490 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2164 Vcvv 3414 class class class wbr 4875 Rel wrel 5351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-br 4876 df-opab 4938 df-xp 5352 df-rel 5353 |
This theorem is referenced by: brrelex1i 5397 posn 5426 frsn 5428 releldm 5595 relelrn 5596 relimasn 5733 funmo 6143 ertr 8029 dirtr 17596 issetssr 34800 eqvreltr 34896 frege129d 38895 nnfoctb 40029 clim2d 40698 climfv 40716 meadjiun 41472 caragenunicl 41530 |
Copyright terms: Public domain | W3C validator |