Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nsnid Structured version   Visualization version   GIF version

Theorem bj-nsnid 37052
Description: A set does not contain the singleton formed on it. More precisely, one can prove that a class contains the singleton formed on it if and only if it is proper and contains the empty set (since it is "the singleton formed on" any proper class, see snprc 4677): ¬ ({𝐴} ∈ 𝐴 ↔ (∅ ∈ 𝐴𝐴 ∈ V)). (Contributed by BJ, 4-Feb-2023.)
Assertion
Ref Expression
bj-nsnid (𝐴𝑉 → ¬ {𝐴} ∈ 𝐴)

Proof of Theorem bj-nsnid
StepHypRef Expression
1 en2lp 9537 . 2 ¬ (𝐴 ∈ {𝐴} ∧ {𝐴} ∈ 𝐴)
2 snidg 4620 . . . 4 (𝐴𝑉𝐴 ∈ {𝐴})
32anim1i 615 . . 3 ((𝐴𝑉 ∧ {𝐴} ∈ 𝐴) → (𝐴 ∈ {𝐴} ∧ {𝐴} ∈ 𝐴))
43ex 412 . 2 (𝐴𝑉 → ({𝐴} ∈ 𝐴 → (𝐴 ∈ {𝐴} ∧ {𝐴} ∈ 𝐴)))
51, 4mtoi 199 1 (𝐴𝑉 → ¬ {𝐴} ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2109  {csn 4585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-reg 9521
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-eprel 5531  df-fr 5584
This theorem is referenced by:  bj-inftyexpitaudisj  37187
  Copyright terms: Public domain W3C validator