| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nsnid | Structured version Visualization version GIF version | ||
| Description: A set does not contain the singleton formed on it. More precisely, one can prove that a class contains the singleton formed on it if and only if it is proper and contains the empty set (since it is "the singleton formed on" any proper class, see snprc 4684): ⊢ ¬ ({𝐴} ∈ 𝐴 ↔ (∅ ∈ 𝐴 → 𝐴 ∈ V)). (Contributed by BJ, 4-Feb-2023.) |
| Ref | Expression |
|---|---|
| bj-nsnid | ⊢ (𝐴 ∈ 𝑉 → ¬ {𝐴} ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en2lp 9566 | . 2 ⊢ ¬ (𝐴 ∈ {𝐴} ∧ {𝐴} ∈ 𝐴) | |
| 2 | snidg 4627 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
| 3 | 2 | anim1i 615 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ 𝐴) → (𝐴 ∈ {𝐴} ∧ {𝐴} ∈ 𝐴)) |
| 4 | 3 | ex 412 | . 2 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} ∈ 𝐴 → (𝐴 ∈ {𝐴} ∧ {𝐴} ∈ 𝐴))) |
| 5 | 1, 4 | mtoi 199 | 1 ⊢ (𝐴 ∈ 𝑉 → ¬ {𝐴} ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 {csn 4592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-reg 9552 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-eprel 5541 df-fr 5594 |
| This theorem is referenced by: bj-inftyexpitaudisj 37200 |
| Copyright terms: Public domain | W3C validator |