![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nsnid | Structured version Visualization version GIF version |
Description: A set does not contain the singleton formed on it. More precisely, one can prove that a class contains the singleton formed on it if and only if it is proper and contains the empty set (since it is "the singleton formed on" any proper class, see snprc 4742): ⊢ ¬ ({𝐴} ∈ 𝐴 ↔ (∅ ∈ 𝐴 → 𝐴 ∈ V)). (Contributed by BJ, 4-Feb-2023.) |
Ref | Expression |
---|---|
bj-nsnid | ⊢ (𝐴 ∈ 𝑉 → ¬ {𝐴} ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en2lp 9675 | . 2 ⊢ ¬ (𝐴 ∈ {𝐴} ∧ {𝐴} ∈ 𝐴) | |
2 | snidg 4682 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
3 | 2 | anim1i 614 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ 𝐴) → (𝐴 ∈ {𝐴} ∧ {𝐴} ∈ 𝐴)) |
4 | 3 | ex 412 | . 2 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} ∈ 𝐴 → (𝐴 ∈ {𝐴} ∧ {𝐴} ∈ 𝐴))) |
5 | 1, 4 | mtoi 199 | 1 ⊢ (𝐴 ∈ 𝑉 → ¬ {𝐴} ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-reg 9661 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-eprel 5599 df-fr 5652 |
This theorem is referenced by: bj-inftyexpitaudisj 37171 |
Copyright terms: Public domain | W3C validator |