Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nsnid Structured version   Visualization version   GIF version

Theorem bj-nsnid 37071
Description: A set does not contain the singleton formed on it. More precisely, one can prove that a class contains the singleton formed on it if and only if it is proper and contains the empty set (since it is "the singleton formed on" any proper class, see snprc 4717): ¬ ({𝐴} ∈ 𝐴 ↔ (∅ ∈ 𝐴𝐴 ∈ V)). (Contributed by BJ, 4-Feb-2023.)
Assertion
Ref Expression
bj-nsnid (𝐴𝑉 → ¬ {𝐴} ∈ 𝐴)

Proof of Theorem bj-nsnid
StepHypRef Expression
1 en2lp 9646 . 2 ¬ (𝐴 ∈ {𝐴} ∧ {𝐴} ∈ 𝐴)
2 snidg 4660 . . . 4 (𝐴𝑉𝐴 ∈ {𝐴})
32anim1i 615 . . 3 ((𝐴𝑉 ∧ {𝐴} ∈ 𝐴) → (𝐴 ∈ {𝐴} ∧ {𝐴} ∈ 𝐴))
43ex 412 . 2 (𝐴𝑉 → ({𝐴} ∈ 𝐴 → (𝐴 ∈ {𝐴} ∧ {𝐴} ∈ 𝐴)))
51, 4mtoi 199 1 (𝐴𝑉 → ¬ {𝐴} ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2108  {csn 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-reg 9632
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-eprel 5584  df-fr 5637
This theorem is referenced by:  bj-inftyexpitaudisj  37206
  Copyright terms: Public domain W3C validator