Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nsnid Structured version   Visualization version   GIF version

Theorem bj-nsnid 35168
Description: A set does not contain the singleton formed on it. More precisely, one can prove that a class contains the singleton formed on it if and only if it is proper and contains the empty set (since it is "the singleton formed on" any proper class, see snprc 4650): ¬ ({𝐴} ∈ 𝐴 ↔ (∅ ∈ 𝐴𝐴 ∈ V)). (Contributed by BJ, 4-Feb-2023.)
Assertion
Ref Expression
bj-nsnid (𝐴𝑉 → ¬ {𝐴} ∈ 𝐴)

Proof of Theorem bj-nsnid
StepHypRef Expression
1 en2lp 9294 . 2 ¬ (𝐴 ∈ {𝐴} ∧ {𝐴} ∈ 𝐴)
2 snidg 4592 . . . 4 (𝐴𝑉𝐴 ∈ {𝐴})
32anim1i 614 . . 3 ((𝐴𝑉 ∧ {𝐴} ∈ 𝐴) → (𝐴 ∈ {𝐴} ∧ {𝐴} ∈ 𝐴))
43ex 412 . 2 (𝐴𝑉 → ({𝐴} ∈ 𝐴 → (𝐴 ∈ {𝐴} ∧ {𝐴} ∈ 𝐴)))
51, 4mtoi 198 1 (𝐴𝑉 → ¬ {𝐴} ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2108  {csn 4558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-reg 9281
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-eprel 5486  df-fr 5535
This theorem is referenced by:  bj-inftyexpitaudisj  35303
  Copyright terms: Public domain W3C validator