Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nsnid Structured version   Visualization version   GIF version

Theorem bj-nsnid 37093
Description: A set does not contain the singleton formed on it. More precisely, one can prove that a class contains the singleton formed on it if and only if it is proper and contains the empty set (since it is "the singleton formed on" any proper class, see snprc 4698): ¬ ({𝐴} ∈ 𝐴 ↔ (∅ ∈ 𝐴𝐴 ∈ V)). (Contributed by BJ, 4-Feb-2023.)
Assertion
Ref Expression
bj-nsnid (𝐴𝑉 → ¬ {𝐴} ∈ 𝐴)

Proof of Theorem bj-nsnid
StepHypRef Expression
1 en2lp 9625 . 2 ¬ (𝐴 ∈ {𝐴} ∧ {𝐴} ∈ 𝐴)
2 snidg 4641 . . . 4 (𝐴𝑉𝐴 ∈ {𝐴})
32anim1i 615 . . 3 ((𝐴𝑉 ∧ {𝐴} ∈ 𝐴) → (𝐴 ∈ {𝐴} ∧ {𝐴} ∈ 𝐴))
43ex 412 . 2 (𝐴𝑉 → ({𝐴} ∈ 𝐴 → (𝐴 ∈ {𝐴} ∧ {𝐴} ∈ 𝐴)))
51, 4mtoi 199 1 (𝐴𝑉 → ¬ {𝐴} ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2109  {csn 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-reg 9611
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-eprel 5558  df-fr 5611
This theorem is referenced by:  bj-inftyexpitaudisj  37228
  Copyright terms: Public domain W3C validator