Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-xpexg2 Structured version   Visualization version   GIF version

Theorem bj-xpexg2 35194
Description: Curried (exported) form of xpexg 7632. (Contributed by BJ, 2-Apr-2019.)
Assertion
Ref Expression
bj-xpexg2 (𝐴𝑉 → (𝐵𝑊 → (𝐴 × 𝐵) ∈ V))

Proof of Theorem bj-xpexg2
StepHypRef Expression
1 xpexg 7632 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) ∈ V)
21ex 414 1 (𝐴𝑉 → (𝐵𝑊 → (𝐴 × 𝐵) ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2104  Vcvv 3437   × cxp 5598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-opab 5144  df-xp 5606  df-rel 5607
This theorem is referenced by:  bj-xpnzexb  35195  bj-xtagex  35223
  Copyright terms: Public domain W3C validator