| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-xpexg2 | Structured version Visualization version GIF version | ||
| Description: Curried (exported) form of xpexg 7706. (Contributed by BJ, 2-Apr-2019.) |
| Ref | Expression |
|---|---|
| bj-xpexg2 | ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ 𝑊 → (𝐴 × 𝐵) ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpexg 7706 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | |
| 2 | 1 | ex 412 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ 𝑊 → (𝐴 × 𝐵) ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3444 × cxp 5629 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-opab 5165 df-xp 5637 df-rel 5638 |
| This theorem is referenced by: bj-xpnzexb 36922 bj-xtagex 36950 |
| Copyright terms: Public domain | W3C validator |