Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-xpexg2 Structured version   Visualization version   GIF version

Theorem bj-xpexg2 36948
Description: Curried (exported) form of xpexg 7726. (Contributed by BJ, 2-Apr-2019.)
Assertion
Ref Expression
bj-xpexg2 (𝐴𝑉 → (𝐵𝑊 → (𝐴 × 𝐵) ∈ V))

Proof of Theorem bj-xpexg2
StepHypRef Expression
1 xpexg 7726 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) ∈ V)
21ex 412 1 (𝐴𝑉 → (𝐵𝑊 → (𝐴 × 𝐵) ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3447   × cxp 5636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-opab 5170  df-xp 5644  df-rel 5645
This theorem is referenced by:  bj-xpnzexb  36949  bj-xtagex  36977
  Copyright terms: Public domain W3C validator