Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-xpexg2 Structured version   Visualization version   GIF version

Theorem bj-xpexg2 35138
Description: Curried (exported) form of xpexg 7592. (Contributed by BJ, 2-Apr-2019.)
Assertion
Ref Expression
bj-xpexg2 (𝐴𝑉 → (𝐵𝑊 → (𝐴 × 𝐵) ∈ V))

Proof of Theorem bj-xpexg2
StepHypRef Expression
1 xpexg 7592 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) ∈ V)
21ex 413 1 (𝐴𝑉 → (𝐵𝑊 → (𝐴 × 𝐵) ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  Vcvv 3431   × cxp 5587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-opab 5142  df-xp 5595  df-rel 5596
This theorem is referenced by:  bj-xpnzexb  35139  bj-xtagex  35167
  Copyright terms: Public domain W3C validator