Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-xpnzex Structured version   Visualization version   GIF version

Theorem bj-xpnzex 36296
Description: If the first factor of a product is nonempty, and the product is a set, then the second factor is a set. UPDATE: this is actually the curried (exported) form of xpexcnv 7904 (up to commutation in the product). (Contributed by BJ, 6-Oct-2018.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-xpnzex (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝑉𝐵 ∈ V))

Proof of Theorem bj-xpnzex
StepHypRef Expression
1 0ex 5297 . . . . 5 ∅ ∈ V
2 eleq1a 2820 . . . . 5 (∅ ∈ V → (𝐵 = ∅ → 𝐵 ∈ V))
31, 2ax-mp 5 . . . 4 (𝐵 = ∅ → 𝐵 ∈ V)
43a1d 25 . . 3 (𝐵 = ∅ → ((𝐴 × 𝐵) ∈ 𝑉𝐵 ∈ V))
54a1d 25 . 2 (𝐵 = ∅ → (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝑉𝐵 ∈ V)))
6 xpnz 6148 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅)
7 xpexr2 7903 . . . . . 6 (((𝐴 × 𝐵) ∈ 𝑉 ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
87simprd 495 . . . . 5 (((𝐴 × 𝐵) ∈ 𝑉 ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐵 ∈ V)
98expcom 413 . . . 4 ((𝐴 × 𝐵) ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝑉𝐵 ∈ V))
106, 9sylbi 216 . . 3 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ((𝐴 × 𝐵) ∈ 𝑉𝐵 ∈ V))
1110expcom 413 . 2 (𝐵 ≠ ∅ → (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝑉𝐵 ∈ V)))
125, 11pm2.61ine 3017 1 (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝑉𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wne 2932  Vcvv 3466  c0 4314   × cxp 5664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-xp 5672  df-rel 5673  df-cnv 5674  df-dm 5676  df-rn 5677
This theorem is referenced by:  bj-xpnzexb  36298
  Copyright terms: Public domain W3C validator