Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-xpnzex | Structured version Visualization version GIF version |
Description: If the first factor of a product is nonempty, and the product is a set, then the second factor is a set. UPDATE: this is actually the curried (exported) form of xpexcnv 7738 (up to commutation in the product). (Contributed by BJ, 6-Oct-2018.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-xpnzex | ⊢ (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝑉 → 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5224 | . . . . 5 ⊢ ∅ ∈ V | |
2 | eleq1a 2835 | . . . . 5 ⊢ (∅ ∈ V → (𝐵 = ∅ → 𝐵 ∈ V)) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (𝐵 = ∅ → 𝐵 ∈ V) |
4 | 3 | a1d 25 | . . 3 ⊢ (𝐵 = ∅ → ((𝐴 × 𝐵) ∈ 𝑉 → 𝐵 ∈ V)) |
5 | 4 | a1d 25 | . 2 ⊢ (𝐵 = ∅ → (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝑉 → 𝐵 ∈ V))) |
6 | xpnz 6050 | . . . 4 ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅) | |
7 | xpexr2 7737 | . . . . . 6 ⊢ (((𝐴 × 𝐵) ∈ 𝑉 ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
8 | 7 | simprd 499 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝑉 ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐵 ∈ V) |
9 | 8 | expcom 417 | . . . 4 ⊢ ((𝐴 × 𝐵) ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝑉 → 𝐵 ∈ V)) |
10 | 6, 9 | sylbi 220 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ((𝐴 × 𝐵) ∈ 𝑉 → 𝐵 ∈ V)) |
11 | 10 | expcom 417 | . 2 ⊢ (𝐵 ≠ ∅ → (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝑉 → 𝐵 ∈ V))) |
12 | 5, 11 | pm2.61ine 3028 | 1 ⊢ (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝑉 → 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ≠ wne 2943 Vcvv 3423 ∅c0 4254 × cxp 5577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 ax-un 7563 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5585 df-rel 5586 df-cnv 5587 df-dm 5589 df-rn 5590 |
This theorem is referenced by: bj-xpnzexb 35053 |
Copyright terms: Public domain | W3C validator |