![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-xpnzex | Structured version Visualization version GIF version |
Description: If the first factor of a product is nonempty, and the product is a set, then the second factor is a set. UPDATE: this is actually the curried (exported) form of xpexcnv 7915 (up to commutation in the product). (Contributed by BJ, 6-Oct-2018.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-xpnzex | ⊢ (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝑉 → 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5307 | . . . . 5 ⊢ ∅ ∈ V | |
2 | eleq1a 2827 | . . . . 5 ⊢ (∅ ∈ V → (𝐵 = ∅ → 𝐵 ∈ V)) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (𝐵 = ∅ → 𝐵 ∈ V) |
4 | 3 | a1d 25 | . . 3 ⊢ (𝐵 = ∅ → ((𝐴 × 𝐵) ∈ 𝑉 → 𝐵 ∈ V)) |
5 | 4 | a1d 25 | . 2 ⊢ (𝐵 = ∅ → (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝑉 → 𝐵 ∈ V))) |
6 | xpnz 6158 | . . . 4 ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅) | |
7 | xpexr2 7914 | . . . . . 6 ⊢ (((𝐴 × 𝐵) ∈ 𝑉 ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
8 | 7 | simprd 495 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝑉 ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐵 ∈ V) |
9 | 8 | expcom 413 | . . . 4 ⊢ ((𝐴 × 𝐵) ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝑉 → 𝐵 ∈ V)) |
10 | 6, 9 | sylbi 216 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ((𝐴 × 𝐵) ∈ 𝑉 → 𝐵 ∈ V)) |
11 | 10 | expcom 413 | . 2 ⊢ (𝐵 ≠ ∅ → (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝑉 → 𝐵 ∈ V))) |
12 | 5, 11 | pm2.61ine 3024 | 1 ⊢ (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝑉 → 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 Vcvv 3473 ∅c0 4322 × cxp 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 df-dm 5686 df-rn 5687 |
This theorem is referenced by: bj-xpnzexb 36158 |
Copyright terms: Public domain | W3C validator |