![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-xpnzex | Structured version Visualization version GIF version |
Description: If the first factor of a product is nonempty, and the product is a set, then the second factor is a set. UPDATE: this is actually the curried (exported) form of xpexcnv 7904 (up to commutation in the product). (Contributed by BJ, 6-Oct-2018.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-xpnzex | ⊢ (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝑉 → 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5297 | . . . . 5 ⊢ ∅ ∈ V | |
2 | eleq1a 2820 | . . . . 5 ⊢ (∅ ∈ V → (𝐵 = ∅ → 𝐵 ∈ V)) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (𝐵 = ∅ → 𝐵 ∈ V) |
4 | 3 | a1d 25 | . . 3 ⊢ (𝐵 = ∅ → ((𝐴 × 𝐵) ∈ 𝑉 → 𝐵 ∈ V)) |
5 | 4 | a1d 25 | . 2 ⊢ (𝐵 = ∅ → (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝑉 → 𝐵 ∈ V))) |
6 | xpnz 6148 | . . . 4 ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅) | |
7 | xpexr2 7903 | . . . . . 6 ⊢ (((𝐴 × 𝐵) ∈ 𝑉 ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
8 | 7 | simprd 495 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝑉 ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐵 ∈ V) |
9 | 8 | expcom 413 | . . . 4 ⊢ ((𝐴 × 𝐵) ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝑉 → 𝐵 ∈ V)) |
10 | 6, 9 | sylbi 216 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ((𝐴 × 𝐵) ∈ 𝑉 → 𝐵 ∈ V)) |
11 | 10 | expcom 413 | . 2 ⊢ (𝐵 ≠ ∅ → (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝑉 → 𝐵 ∈ V))) |
12 | 5, 11 | pm2.61ine 3017 | 1 ⊢ (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝑉 → 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 Vcvv 3466 ∅c0 4314 × cxp 5664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-xp 5672 df-rel 5673 df-cnv 5674 df-dm 5676 df-rn 5677 |
This theorem is referenced by: bj-xpnzexb 36298 |
Copyright terms: Public domain | W3C validator |