Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-xpnzex Structured version   Visualization version   GIF version

Theorem bj-xpnzex 36942
Description: If the first factor of a product is nonempty, and the product is a set, then the second factor is a set. UPDATE: this is actually the curried (exported) form of xpexcnv 7943 (up to commutation in the product). (Contributed by BJ, 6-Oct-2018.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-xpnzex (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝑉𝐵 ∈ V))

Proof of Theorem bj-xpnzex
StepHypRef Expression
1 0ex 5313 . . . . 5 ∅ ∈ V
2 eleq1a 2834 . . . . 5 (∅ ∈ V → (𝐵 = ∅ → 𝐵 ∈ V))
31, 2ax-mp 5 . . . 4 (𝐵 = ∅ → 𝐵 ∈ V)
43a1d 25 . . 3 (𝐵 = ∅ → ((𝐴 × 𝐵) ∈ 𝑉𝐵 ∈ V))
54a1d 25 . 2 (𝐵 = ∅ → (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝑉𝐵 ∈ V)))
6 xpnz 6181 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅)
7 xpexr2 7942 . . . . . 6 (((𝐴 × 𝐵) ∈ 𝑉 ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
87simprd 495 . . . . 5 (((𝐴 × 𝐵) ∈ 𝑉 ∧ (𝐴 × 𝐵) ≠ ∅) → 𝐵 ∈ V)
98expcom 413 . . . 4 ((𝐴 × 𝐵) ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝑉𝐵 ∈ V))
106, 9sylbi 217 . . 3 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ((𝐴 × 𝐵) ∈ 𝑉𝐵 ∈ V))
1110expcom 413 . 2 (𝐵 ≠ ∅ → (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝑉𝐵 ∈ V)))
125, 11pm2.61ine 3023 1 (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ 𝑉𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  Vcvv 3478  c0 4339   × cxp 5687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696  df-cnv 5697  df-dm 5699  df-rn 5700
This theorem is referenced by:  bj-xpnzexb  36944
  Copyright terms: Public domain W3C validator