Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcoss3 Structured version   Visualization version   GIF version

Theorem brcoss3 38055
Description: Alternate form of the 𝐴 and 𝐵 are cosets by 𝑅 binary relation. (Contributed by Peter Mazsa, 26-Mar-2019.)
Assertion
Ref Expression
brcoss3 ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅))

Proof of Theorem brcoss3
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 brcnvg 5882 . . . . 5 ((𝐴𝑉𝑢 ∈ V) → (𝐴𝑅𝑢𝑢𝑅𝐴))
21elvd 3468 . . . 4 (𝐴𝑉 → (𝐴𝑅𝑢𝑢𝑅𝐴))
3 brcnvg 5882 . . . . 5 ((𝐵𝑊𝑢 ∈ V) → (𝐵𝑅𝑢𝑢𝑅𝐵))
43elvd 3468 . . . 4 (𝐵𝑊 → (𝐵𝑅𝑢𝑢𝑅𝐵))
52, 4bi2anan9 636 . . 3 ((𝐴𝑉𝐵𝑊) → ((𝐴𝑅𝑢𝐵𝑅𝑢) ↔ (𝑢𝑅𝐴𝑢𝑅𝐵)))
65exbidv 1916 . 2 ((𝐴𝑉𝐵𝑊) → (∃𝑢(𝐴𝑅𝑢𝐵𝑅𝑢) ↔ ∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐵)))
7 ecinn0 37975 . 2 ((𝐴𝑉𝐵𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅ ↔ ∃𝑢(𝐴𝑅𝑢𝐵𝑅𝑢)))
8 brcoss 38053 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐵)))
96, 7, 83bitr4rd 311 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wex 1773  wcel 2098  wne 2929  Vcvv 3461  cin 3943  c0 4322   class class class wbr 5149  ccnv 5677  [cec 8723  ccoss 37799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5150  df-opab 5212  df-xp 5684  df-cnv 5686  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-ec 8727  df-coss 38033
This theorem is referenced by:  br2coss  38060  trcoss2  38106
  Copyright terms: Public domain W3C validator