Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcoss3 Structured version   Visualization version   GIF version

Theorem brcoss3 38456
Description: Alternate form of the 𝐴 and 𝐵 are cosets by 𝑅 binary relation. (Contributed by Peter Mazsa, 26-Mar-2019.)
Assertion
Ref Expression
brcoss3 ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅))

Proof of Theorem brcoss3
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 brcnvg 5864 . . . . 5 ((𝐴𝑉𝑢 ∈ V) → (𝐴𝑅𝑢𝑢𝑅𝐴))
21elvd 3470 . . . 4 (𝐴𝑉 → (𝐴𝑅𝑢𝑢𝑅𝐴))
3 brcnvg 5864 . . . . 5 ((𝐵𝑊𝑢 ∈ V) → (𝐵𝑅𝑢𝑢𝑅𝐵))
43elvd 3470 . . . 4 (𝐵𝑊 → (𝐵𝑅𝑢𝑢𝑅𝐵))
52, 4bi2anan9 638 . . 3 ((𝐴𝑉𝐵𝑊) → ((𝐴𝑅𝑢𝐵𝑅𝑢) ↔ (𝑢𝑅𝐴𝑢𝑅𝐵)))
65exbidv 1921 . 2 ((𝐴𝑉𝐵𝑊) → (∃𝑢(𝐴𝑅𝑢𝐵𝑅𝑢) ↔ ∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐵)))
7 ecinn0 38376 . 2 ((𝐴𝑉𝐵𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅ ↔ ∃𝑢(𝐴𝑅𝑢𝐵𝑅𝑢)))
8 brcoss 38454 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐵)))
96, 7, 83bitr4rd 312 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1779  wcel 2109  wne 2933  Vcvv 3464  cin 3930  c0 4313   class class class wbr 5124  ccnv 5658  [cec 8722  ccoss 38204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665  df-cnv 5667  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ec 8726  df-coss 38434
This theorem is referenced by:  br2coss  38461  trcoss2  38507
  Copyright terms: Public domain W3C validator