| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brcoss3 | Structured version Visualization version GIF version | ||
| Description: Alternate form of the 𝐴 and 𝐵 are cosets by 𝑅 binary relation. (Contributed by Peter Mazsa, 26-Mar-2019.) |
| Ref | Expression |
|---|---|
| brcoss3 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ([𝐴]◡𝑅 ∩ [𝐵]◡𝑅) ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brcnvg 5843 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑢 ∈ V) → (𝐴◡𝑅𝑢 ↔ 𝑢𝑅𝐴)) | |
| 2 | 1 | elvd 3453 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴◡𝑅𝑢 ↔ 𝑢𝑅𝐴)) |
| 3 | brcnvg 5843 | . . . . 5 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑢 ∈ V) → (𝐵◡𝑅𝑢 ↔ 𝑢𝑅𝐵)) | |
| 4 | 3 | elvd 3453 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → (𝐵◡𝑅𝑢 ↔ 𝑢𝑅𝐵)) |
| 5 | 2, 4 | bi2anan9 638 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴◡𝑅𝑢 ∧ 𝐵◡𝑅𝑢) ↔ (𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) |
| 6 | 5 | exbidv 1921 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑢(𝐴◡𝑅𝑢 ∧ 𝐵◡𝑅𝑢) ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) |
| 7 | ecinn0 38335 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴]◡𝑅 ∩ [𝐵]◡𝑅) ≠ ∅ ↔ ∃𝑢(𝐴◡𝑅𝑢 ∧ 𝐵◡𝑅𝑢))) | |
| 8 | brcoss 38422 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) | |
| 9 | 6, 7, 8 | 3bitr4rd 312 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ([𝐴]◡𝑅 ∩ [𝐵]◡𝑅) ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ∩ cin 3913 ∅c0 4296 class class class wbr 5107 ◡ccnv 5637 [cec 8669 ≀ ccoss 38169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ec 8673 df-coss 38402 |
| This theorem is referenced by: br2coss 38429 trcoss2 38475 |
| Copyright terms: Public domain | W3C validator |