![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brcoss3 | Structured version Visualization version GIF version |
Description: Alternate form of the 𝐴 and 𝐵 are cosets by 𝑅 binary relation. (Contributed by Peter Mazsa, 26-Mar-2019.) |
Ref | Expression |
---|---|
brcoss3 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ([𝐴]◡𝑅 ∩ [𝐵]◡𝑅) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcnvg 5879 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑢 ∈ V) → (𝐴◡𝑅𝑢 ↔ 𝑢𝑅𝐴)) | |
2 | 1 | elvd 3480 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴◡𝑅𝑢 ↔ 𝑢𝑅𝐴)) |
3 | brcnvg 5879 | . . . . 5 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑢 ∈ V) → (𝐵◡𝑅𝑢 ↔ 𝑢𝑅𝐵)) | |
4 | 3 | elvd 3480 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → (𝐵◡𝑅𝑢 ↔ 𝑢𝑅𝐵)) |
5 | 2, 4 | bi2anan9 636 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴◡𝑅𝑢 ∧ 𝐵◡𝑅𝑢) ↔ (𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) |
6 | 5 | exbidv 1923 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑢(𝐴◡𝑅𝑢 ∧ 𝐵◡𝑅𝑢) ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) |
7 | ecinn0 37688 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴]◡𝑅 ∩ [𝐵]◡𝑅) ≠ ∅ ↔ ∃𝑢(𝐴◡𝑅𝑢 ∧ 𝐵◡𝑅𝑢))) | |
8 | brcoss 37767 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) | |
9 | 6, 7, 8 | 3bitr4rd 312 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ([𝐴]◡𝑅 ∩ [𝐵]◡𝑅) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∃wex 1780 ∈ wcel 2105 ≠ wne 2939 Vcvv 3473 ∩ cin 3947 ∅c0 4322 class class class wbr 5148 ◡ccnv 5675 [cec 8707 ≀ ccoss 37509 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ec 8711 df-coss 37747 |
This theorem is referenced by: br2coss 37774 trcoss2 37820 |
Copyright terms: Public domain | W3C validator |