|   | Mathbox for Peter Mazsa | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brcoss3 | Structured version Visualization version GIF version | ||
| Description: Alternate form of the 𝐴 and 𝐵 are cosets by 𝑅 binary relation. (Contributed by Peter Mazsa, 26-Mar-2019.) | 
| Ref | Expression | 
|---|---|
| brcoss3 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ([𝐴]◡𝑅 ∩ [𝐵]◡𝑅) ≠ ∅)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | brcnvg 5890 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑢 ∈ V) → (𝐴◡𝑅𝑢 ↔ 𝑢𝑅𝐴)) | |
| 2 | 1 | elvd 3486 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴◡𝑅𝑢 ↔ 𝑢𝑅𝐴)) | 
| 3 | brcnvg 5890 | . . . . 5 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑢 ∈ V) → (𝐵◡𝑅𝑢 ↔ 𝑢𝑅𝐵)) | |
| 4 | 3 | elvd 3486 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → (𝐵◡𝑅𝑢 ↔ 𝑢𝑅𝐵)) | 
| 5 | 2, 4 | bi2anan9 638 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴◡𝑅𝑢 ∧ 𝐵◡𝑅𝑢) ↔ (𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) | 
| 6 | 5 | exbidv 1921 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑢(𝐴◡𝑅𝑢 ∧ 𝐵◡𝑅𝑢) ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) | 
| 7 | ecinn0 38354 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴]◡𝑅 ∩ [𝐵]◡𝑅) ≠ ∅ ↔ ∃𝑢(𝐴◡𝑅𝑢 ∧ 𝐵◡𝑅𝑢))) | |
| 8 | brcoss 38432 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) | |
| 9 | 6, 7, 8 | 3bitr4rd 312 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ([𝐴]◡𝑅 ∩ [𝐵]◡𝑅) ≠ ∅)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2108 ≠ wne 2940 Vcvv 3480 ∩ cin 3950 ∅c0 4333 class class class wbr 5143 ◡ccnv 5684 [cec 8743 ≀ ccoss 38182 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-xp 5691 df-cnv 5693 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ec 8747 df-coss 38412 | 
| This theorem is referenced by: br2coss 38439 trcoss2 38485 | 
| Copyright terms: Public domain | W3C validator |