Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brcoss3 | Structured version Visualization version GIF version |
Description: Alternate form of the 𝐴 and 𝐵 are cosets by 𝑅 binary relation. (Contributed by Peter Mazsa, 26-Mar-2019.) |
Ref | Expression |
---|---|
brcoss3 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ([𝐴]◡𝑅 ∩ [𝐵]◡𝑅) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcnvg 5788 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑢 ∈ V) → (𝐴◡𝑅𝑢 ↔ 𝑢𝑅𝐴)) | |
2 | 1 | elvd 3439 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴◡𝑅𝑢 ↔ 𝑢𝑅𝐴)) |
3 | brcnvg 5788 | . . . . 5 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑢 ∈ V) → (𝐵◡𝑅𝑢 ↔ 𝑢𝑅𝐵)) | |
4 | 3 | elvd 3439 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → (𝐵◡𝑅𝑢 ↔ 𝑢𝑅𝐵)) |
5 | 2, 4 | bi2anan9 636 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴◡𝑅𝑢 ∧ 𝐵◡𝑅𝑢) ↔ (𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) |
6 | 5 | exbidv 1924 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑢(𝐴◡𝑅𝑢 ∧ 𝐵◡𝑅𝑢) ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) |
7 | ecinn0 36485 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴]◡𝑅 ∩ [𝐵]◡𝑅) ≠ ∅ ↔ ∃𝑢(𝐴◡𝑅𝑢 ∧ 𝐵◡𝑅𝑢))) | |
8 | brcoss 36554 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) | |
9 | 6, 7, 8 | 3bitr4rd 312 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ([𝐴]◡𝑅 ∩ [𝐵]◡𝑅) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 ∩ cin 3886 ∅c0 4256 class class class wbr 5074 ◡ccnv 5588 [cec 8496 ≀ ccoss 36333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ec 8500 df-coss 36537 |
This theorem is referenced by: br2coss 36561 trcoss2 36602 |
Copyright terms: Public domain | W3C validator |