Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcoss3 Structured version   Visualization version   GIF version

Theorem brcoss3 36483
Description: Alternate form of the 𝐴 and 𝐵 are cosets by 𝑅 binary relation. (Contributed by Peter Mazsa, 26-Mar-2019.)
Assertion
Ref Expression
brcoss3 ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅))

Proof of Theorem brcoss3
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 brcnvg 5777 . . . . 5 ((𝐴𝑉𝑢 ∈ V) → (𝐴𝑅𝑢𝑢𝑅𝐴))
21elvd 3429 . . . 4 (𝐴𝑉 → (𝐴𝑅𝑢𝑢𝑅𝐴))
3 brcnvg 5777 . . . . 5 ((𝐵𝑊𝑢 ∈ V) → (𝐵𝑅𝑢𝑢𝑅𝐵))
43elvd 3429 . . . 4 (𝐵𝑊 → (𝐵𝑅𝑢𝑢𝑅𝐵))
52, 4bi2anan9 635 . . 3 ((𝐴𝑉𝐵𝑊) → ((𝐴𝑅𝑢𝐵𝑅𝑢) ↔ (𝑢𝑅𝐴𝑢𝑅𝐵)))
65exbidv 1925 . 2 ((𝐴𝑉𝐵𝑊) → (∃𝑢(𝐴𝑅𝑢𝐵𝑅𝑢) ↔ ∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐵)))
7 ecinn0 36412 . 2 ((𝐴𝑉𝐵𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅ ↔ ∃𝑢(𝐴𝑅𝑢𝐵𝑅𝑢)))
8 brcoss 36481 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐵)))
96, 7, 83bitr4rd 311 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wex 1783  wcel 2108  wne 2942  Vcvv 3422  cin 3882  c0 4253   class class class wbr 5070  ccnv 5579  [cec 8454  ccoss 36260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ec 8458  df-coss 36464
This theorem is referenced by:  br2coss  36488  trcoss2  36529
  Copyright terms: Public domain W3C validator