![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brcoels | Structured version Visualization version GIF version |
Description: 𝐵 and 𝐶 are coelements : a binary relation. (Contributed by Peter Mazsa, 14-Jan-2020.) (Revised by Peter Mazsa, 5-Oct-2021.) |
Ref | Expression |
---|---|
brcoels | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ∼ 𝐴𝐶 ↔ ∃𝑢 ∈ 𝐴 (𝐵 ∈ 𝑢 ∧ 𝐶 ∈ 𝑢))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2820 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝑢 ↔ 𝐵 ∈ 𝑢)) | |
2 | eleq1 2820 | . . . 4 ⊢ (𝑦 = 𝐶 → (𝑦 ∈ 𝑢 ↔ 𝐶 ∈ 𝑢)) | |
3 | 1, 2 | bi2anan9 636 | . . 3 ⊢ ((𝑥 = 𝐵 ∧ 𝑦 = 𝐶) → ((𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢) ↔ (𝐵 ∈ 𝑢 ∧ 𝐶 ∈ 𝑢))) |
4 | 3 | rexbidv 3177 | . 2 ⊢ ((𝑥 = 𝐵 ∧ 𝑦 = 𝐶) → (∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢) ↔ ∃𝑢 ∈ 𝐴 (𝐵 ∈ 𝑢 ∧ 𝐶 ∈ 𝑢))) |
5 | dfcoels 37766 | . 2 ⊢ ∼ 𝐴 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} | |
6 | 4, 5 | brabga 5534 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ∼ 𝐴𝐶 ↔ ∃𝑢 ∈ 𝐴 (𝐵 ∈ 𝑢 ∧ 𝐶 ∈ 𝑢))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∃wrex 3069 class class class wbr 5148 ∼ ccoels 37510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-eprel 5580 df-xp 5682 df-rel 5683 df-cnv 5684 df-res 5688 df-coss 37747 df-coels 37748 |
This theorem is referenced by: erimeq2 38014 |
Copyright terms: Public domain | W3C validator |