Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcoels Structured version   Visualization version   GIF version

Theorem brcoels 38419
Description: 𝐵 and 𝐶 are coelements : a binary relation. (Contributed by Peter Mazsa, 14-Jan-2020.) (Revised by Peter Mazsa, 5-Oct-2021.)
Assertion
Ref Expression
brcoels ((𝐵𝑉𝐶𝑊) → (𝐵𝐴𝐶 ↔ ∃𝑢𝐴 (𝐵𝑢𝐶𝑢)))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝐶
Allowed substitution hints:   𝑉(𝑢)   𝑊(𝑢)

Proof of Theorem brcoels
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2816 . . . 4 (𝑥 = 𝐵 → (𝑥𝑢𝐵𝑢))
2 eleq1 2816 . . . 4 (𝑦 = 𝐶 → (𝑦𝑢𝐶𝑢))
31, 2bi2anan9 638 . . 3 ((𝑥 = 𝐵𝑦 = 𝐶) → ((𝑥𝑢𝑦𝑢) ↔ (𝐵𝑢𝐶𝑢)))
43rexbidv 3157 . 2 ((𝑥 = 𝐵𝑦 = 𝐶) → (∃𝑢𝐴 (𝑥𝑢𝑦𝑢) ↔ ∃𝑢𝐴 (𝐵𝑢𝐶𝑢)))
5 dfcoels 38414 . 2 𝐴 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
64, 5brabga 5489 1 ((𝐵𝑉𝐶𝑊) → (𝐵𝐴𝐶 ↔ ∃𝑢𝐴 (𝐵𝑢𝐶𝑢)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5102  ccoels 38163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-eprel 5531  df-xp 5637  df-rel 5638  df-cnv 5639  df-res 5643  df-coss 38395  df-coels 38396
This theorem is referenced by:  erimeq2  38663
  Copyright terms: Public domain W3C validator