|   | Mathbox for Peter Mazsa | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brcoels | Structured version Visualization version GIF version | ||
| Description: 𝐵 and 𝐶 are coelements : a binary relation. (Contributed by Peter Mazsa, 14-Jan-2020.) (Revised by Peter Mazsa, 5-Oct-2021.) | 
| Ref | Expression | 
|---|---|
| brcoels | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ∼ 𝐴𝐶 ↔ ∃𝑢 ∈ 𝐴 (𝐵 ∈ 𝑢 ∧ 𝐶 ∈ 𝑢))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq1 2829 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝑢 ↔ 𝐵 ∈ 𝑢)) | |
| 2 | eleq1 2829 | . . . 4 ⊢ (𝑦 = 𝐶 → (𝑦 ∈ 𝑢 ↔ 𝐶 ∈ 𝑢)) | |
| 3 | 1, 2 | bi2anan9 638 | . . 3 ⊢ ((𝑥 = 𝐵 ∧ 𝑦 = 𝐶) → ((𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢) ↔ (𝐵 ∈ 𝑢 ∧ 𝐶 ∈ 𝑢))) | 
| 4 | 3 | rexbidv 3179 | . 2 ⊢ ((𝑥 = 𝐵 ∧ 𝑦 = 𝐶) → (∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢) ↔ ∃𝑢 ∈ 𝐴 (𝐵 ∈ 𝑢 ∧ 𝐶 ∈ 𝑢))) | 
| 5 | dfcoels 38431 | . 2 ⊢ ∼ 𝐴 = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} | |
| 6 | 4, 5 | brabga 5539 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ∼ 𝐴𝐶 ↔ ∃𝑢 ∈ 𝐴 (𝐵 ∈ 𝑢 ∧ 𝐶 ∈ 𝑢))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 class class class wbr 5143 ∼ ccoels 38183 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-eprel 5584 df-xp 5691 df-rel 5692 df-cnv 5693 df-res 5697 df-coss 38412 df-coels 38413 | 
| This theorem is referenced by: erimeq2 38679 | 
| Copyright terms: Public domain | W3C validator |