Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcoels Structured version   Visualization version   GIF version

Theorem brcoels 36485
Description: 𝐵 and 𝐶 are coelements : a binary relation. (Contributed by Peter Mazsa, 14-Jan-2020.) (Revised by Peter Mazsa, 5-Oct-2021.)
Assertion
Ref Expression
brcoels ((𝐵𝑉𝐶𝑊) → (𝐵𝐴𝐶 ↔ ∃𝑢𝐴 (𝐵𝑢𝐶𝑢)))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝐶
Allowed substitution hints:   𝑉(𝑢)   𝑊(𝑢)

Proof of Theorem brcoels
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2826 . . . 4 (𝑥 = 𝐵 → (𝑥𝑢𝐵𝑢))
2 eleq1 2826 . . . 4 (𝑦 = 𝐶 → (𝑦𝑢𝐶𝑢))
31, 2bi2anan9 635 . . 3 ((𝑥 = 𝐵𝑦 = 𝐶) → ((𝑥𝑢𝑦𝑢) ↔ (𝐵𝑢𝐶𝑢)))
43rexbidv 3225 . 2 ((𝑥 = 𝐵𝑦 = 𝐶) → (∃𝑢𝐴 (𝑥𝑢𝑦𝑢) ↔ ∃𝑢𝐴 (𝐵𝑢𝐶𝑢)))
5 dfcoels 36480 . 2 𝐴 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
64, 5brabga 5440 1 ((𝐵𝑉𝐶𝑊) → (𝐵𝐴𝐶 ↔ ∃𝑢𝐴 (𝐵𝑢𝐶𝑢)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064   class class class wbr 5070  ccoels 36261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-eprel 5486  df-xp 5586  df-rel 5587  df-cnv 5588  df-res 5592  df-coss 36464  df-coels 36465
This theorem is referenced by:  erim2  36716
  Copyright terms: Public domain W3C validator