Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brcoels | Structured version Visualization version GIF version |
Description: 𝐵 and 𝐶 are coelements : a binary relation. (Contributed by Peter Mazsa, 14-Jan-2020.) (Revised by Peter Mazsa, 5-Oct-2021.) |
Ref | Expression |
---|---|
brcoels | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ∼ 𝐴𝐶 ↔ ∃𝑢 ∈ 𝐴 (𝐵 ∈ 𝑢 ∧ 𝐶 ∈ 𝑢))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2825 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝑢 ↔ 𝐵 ∈ 𝑢)) | |
2 | eleq1 2825 | . . . 4 ⊢ (𝑦 = 𝐶 → (𝑦 ∈ 𝑢 ↔ 𝐶 ∈ 𝑢)) | |
3 | 1, 2 | bi2anan9 639 | . . 3 ⊢ ((𝑥 = 𝐵 ∧ 𝑦 = 𝐶) → ((𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢) ↔ (𝐵 ∈ 𝑢 ∧ 𝐶 ∈ 𝑢))) |
4 | 3 | rexbidv 3221 | . 2 ⊢ ((𝑥 = 𝐵 ∧ 𝑦 = 𝐶) → (∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢) ↔ ∃𝑢 ∈ 𝐴 (𝐵 ∈ 𝑢 ∧ 𝐶 ∈ 𝑢))) |
5 | dfcoels 36295 | . 2 ⊢ ∼ 𝐴 = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} | |
6 | 4, 5 | brabga 5420 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ∼ 𝐴𝐶 ↔ ∃𝑢 ∈ 𝐴 (𝐵 ∈ 𝑢 ∧ 𝐶 ∈ 𝑢))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∃wrex 3062 class class class wbr 5058 ∼ ccoels 36076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 ax-sep 5197 ax-nul 5204 ax-pr 5327 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3415 df-dif 3874 df-un 3876 df-in 3878 df-ss 3888 df-nul 4243 df-if 4445 df-sn 4547 df-pr 4549 df-op 4553 df-br 5059 df-opab 5121 df-eprel 5465 df-xp 5562 df-rel 5563 df-cnv 5564 df-res 5568 df-coss 36279 df-coels 36280 |
This theorem is referenced by: erim2 36531 |
Copyright terms: Public domain | W3C validator |