MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  genpnmax Structured version   Visualization version   GIF version

Theorem genpnmax 10221
Description: An operation on positive reals has no largest member. (Contributed by NM, 10-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
genp.1 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
genp.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
genpnmax.2 (𝑣Q → (𝑧 <Q 𝑤 ↔ (𝑣𝐺𝑧) <Q (𝑣𝐺𝑤)))
genpnmax.3 (𝑧𝐺𝑤) = (𝑤𝐺𝑧)
Assertion
Ref Expression
genpnmax ((𝐴P𝐵P) → (𝑓 ∈ (𝐴𝐹𝐵) → ∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑓,𝐴   𝑥,𝐵,𝑦,𝑧,𝑓   𝑥,𝑤,𝑣,𝐺,𝑦,𝑧,𝑓   𝑓,𝐹,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑤,𝑣)   𝐵(𝑤,𝑣)   𝐹(𝑧,𝑤,𝑣)

Proof of Theorem genpnmax
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 genp.1 . . 3 𝐹 = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦𝐺𝑧)})
2 genp.2 . . 3 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
31, 2genpelv 10214 . 2 ((𝐴P𝐵P) → (𝑓 ∈ (𝐴𝐹𝐵) ↔ ∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺)))
4 prnmax 10209 . . . . . . . 8 ((𝐴P𝑔𝐴) → ∃𝑦𝐴 𝑔 <Q 𝑦)
54adantr 473 . . . . . . 7 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → ∃𝑦𝐴 𝑔 <Q 𝑦)
61, 2genpprecl 10215 . . . . . . . . . . . . . . 15 ((𝐴P𝐵P) → ((𝑦𝐴𝐵) → (𝑦𝐺) ∈ (𝐴𝐹𝐵)))
76exp4b 423 . . . . . . . . . . . . . 14 (𝐴P → (𝐵P → (𝑦𝐴 → (𝐵 → (𝑦𝐺) ∈ (𝐴𝐹𝐵)))))
87com34 91 . . . . . . . . . . . . 13 (𝐴P → (𝐵P → (𝐵 → (𝑦𝐴 → (𝑦𝐺) ∈ (𝐴𝐹𝐵)))))
98imp32 411 . . . . . . . . . . . 12 ((𝐴P ∧ (𝐵P𝐵)) → (𝑦𝐴 → (𝑦𝐺) ∈ (𝐴𝐹𝐵)))
10 elprnq 10205 . . . . . . . . . . . . . 14 ((𝐵P𝐵) → Q)
11 vex 3412 . . . . . . . . . . . . . . . 16 𝑔 ∈ V
12 vex 3412 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
13 genpnmax.2 . . . . . . . . . . . . . . . 16 (𝑣Q → (𝑧 <Q 𝑤 ↔ (𝑣𝐺𝑧) <Q (𝑣𝐺𝑤)))
14 vex 3412 . . . . . . . . . . . . . . . 16 ∈ V
15 genpnmax.3 . . . . . . . . . . . . . . . 16 (𝑧𝐺𝑤) = (𝑤𝐺𝑧)
1611, 12, 13, 14, 15caovord2 7170 . . . . . . . . . . . . . . 15 (Q → (𝑔 <Q 𝑦 ↔ (𝑔𝐺) <Q (𝑦𝐺)))
1716biimpd 221 . . . . . . . . . . . . . 14 (Q → (𝑔 <Q 𝑦 → (𝑔𝐺) <Q (𝑦𝐺)))
1810, 17syl 17 . . . . . . . . . . . . 13 ((𝐵P𝐵) → (𝑔 <Q 𝑦 → (𝑔𝐺) <Q (𝑦𝐺)))
1918adantl 474 . . . . . . . . . . . 12 ((𝐴P ∧ (𝐵P𝐵)) → (𝑔 <Q 𝑦 → (𝑔𝐺) <Q (𝑦𝐺)))
209, 19anim12d 599 . . . . . . . . . . 11 ((𝐴P ∧ (𝐵P𝐵)) → ((𝑦𝐴𝑔 <Q 𝑦) → ((𝑦𝐺) ∈ (𝐴𝐹𝐵) ∧ (𝑔𝐺) <Q (𝑦𝐺))))
21 breq2 4927 . . . . . . . . . . . 12 (𝑥 = (𝑦𝐺) → ((𝑔𝐺) <Q 𝑥 ↔ (𝑔𝐺) <Q (𝑦𝐺)))
2221rspcev 3529 . . . . . . . . . . 11 (((𝑦𝐺) ∈ (𝐴𝐹𝐵) ∧ (𝑔𝐺) <Q (𝑦𝐺)) → ∃𝑥 ∈ (𝐴𝐹𝐵)(𝑔𝐺) <Q 𝑥)
2320, 22syl6 35 . . . . . . . . . 10 ((𝐴P ∧ (𝐵P𝐵)) → ((𝑦𝐴𝑔 <Q 𝑦) → ∃𝑥 ∈ (𝐴𝐹𝐵)(𝑔𝐺) <Q 𝑥))
2423adantlr 702 . . . . . . . . 9 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → ((𝑦𝐴𝑔 <Q 𝑦) → ∃𝑥 ∈ (𝐴𝐹𝐵)(𝑔𝐺) <Q 𝑥))
2524expd 408 . . . . . . . 8 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → (𝑦𝐴 → (𝑔 <Q 𝑦 → ∃𝑥 ∈ (𝐴𝐹𝐵)(𝑔𝐺) <Q 𝑥)))
2625rexlimdv 3222 . . . . . . 7 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → (∃𝑦𝐴 𝑔 <Q 𝑦 → ∃𝑥 ∈ (𝐴𝐹𝐵)(𝑔𝐺) <Q 𝑥))
275, 26mpd 15 . . . . . 6 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → ∃𝑥 ∈ (𝐴𝐹𝐵)(𝑔𝐺) <Q 𝑥)
2827an4s 647 . . . . 5 (((𝐴P𝐵P) ∧ (𝑔𝐴𝐵)) → ∃𝑥 ∈ (𝐴𝐹𝐵)(𝑔𝐺) <Q 𝑥)
29 breq1 4926 . . . . . 6 (𝑓 = (𝑔𝐺) → (𝑓 <Q 𝑥 ↔ (𝑔𝐺) <Q 𝑥))
3029rexbidv 3236 . . . . 5 (𝑓 = (𝑔𝐺) → (∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥 ↔ ∃𝑥 ∈ (𝐴𝐹𝐵)(𝑔𝐺) <Q 𝑥))
3128, 30syl5ibr 238 . . . 4 (𝑓 = (𝑔𝐺) → (((𝐴P𝐵P) ∧ (𝑔𝐴𝐵)) → ∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥))
3231expdcom 407 . . 3 ((𝐴P𝐵P) → ((𝑔𝐴𝐵) → (𝑓 = (𝑔𝐺) → ∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥)))
3332rexlimdvv 3232 . 2 ((𝐴P𝐵P) → (∃𝑔𝐴𝐵 𝑓 = (𝑔𝐺) → ∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥))
343, 33sylbid 232 1 ((𝐴P𝐵P) → (𝑓 ∈ (𝐴𝐹𝐵) → ∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  {cab 2752  wrex 3083   class class class wbr 4923  (class class class)co 6970  cmpo 6972  Qcnq 10066   <Q cltq 10072  Pcnp 10073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-inf2 8892
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-rab 3091  df-v 3411  df-sbc 3676  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-br 4924  df-opab 4986  df-tr 5025  df-id 5306  df-eprel 5311  df-po 5320  df-so 5321  df-fr 5360  df-we 5362  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fv 6190  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-ni 10086  df-nq 10126  df-np 10195
This theorem is referenced by:  genpcl  10222
  Copyright terms: Public domain W3C validator