MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulclprlem Structured version   Visualization version   GIF version

Theorem mulclprlem 10443
Description: Lemma to prove downward closure in positive real multiplication. Part of proof of Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 14-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
mulclprlem ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 ·Q ) → 𝑥 ∈ (𝐴 ·P 𝐵)))
Distinct variable groups:   𝑥,𝑔,   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑔,)   𝐵(𝑔,)

Proof of Theorem mulclprlem
Dummy variables 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elprnq 10415 . . . . . 6 ((𝐴P𝑔𝐴) → 𝑔Q)
2 elprnq 10415 . . . . . 6 ((𝐵P𝐵) → Q)
3 recclnq 10390 . . . . . . . . 9 (Q → (*Q) ∈ Q)
43adantl 484 . . . . . . . 8 ((𝑔QQ) → (*Q) ∈ Q)
5 vex 3499 . . . . . . . . 9 𝑥 ∈ V
6 ovex 7191 . . . . . . . . 9 (𝑔 ·Q ) ∈ V
7 ltmnq 10396 . . . . . . . . 9 (𝑤Q → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
8 fvex 6685 . . . . . . . . 9 (*Q) ∈ V
9 mulcomnq 10377 . . . . . . . . 9 (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦)
105, 6, 7, 8, 9caovord2 7362 . . . . . . . 8 ((*Q) ∈ Q → (𝑥 <Q (𝑔 ·Q ) ↔ (𝑥 ·Q (*Q)) <Q ((𝑔 ·Q ) ·Q (*Q))))
114, 10syl 17 . . . . . . 7 ((𝑔QQ) → (𝑥 <Q (𝑔 ·Q ) ↔ (𝑥 ·Q (*Q)) <Q ((𝑔 ·Q ) ·Q (*Q))))
12 mulassnq 10383 . . . . . . . . . 10 ((𝑔 ·Q ) ·Q (*Q)) = (𝑔 ·Q ( ·Q (*Q)))
13 recidnq 10389 . . . . . . . . . . 11 (Q → ( ·Q (*Q)) = 1Q)
1413oveq2d 7174 . . . . . . . . . 10 (Q → (𝑔 ·Q ( ·Q (*Q))) = (𝑔 ·Q 1Q))
1512, 14syl5eq 2870 . . . . . . . . 9 (Q → ((𝑔 ·Q ) ·Q (*Q)) = (𝑔 ·Q 1Q))
16 mulidnq 10387 . . . . . . . . 9 (𝑔Q → (𝑔 ·Q 1Q) = 𝑔)
1715, 16sylan9eqr 2880 . . . . . . . 8 ((𝑔QQ) → ((𝑔 ·Q ) ·Q (*Q)) = 𝑔)
1817breq2d 5080 . . . . . . 7 ((𝑔QQ) → ((𝑥 ·Q (*Q)) <Q ((𝑔 ·Q ) ·Q (*Q)) ↔ (𝑥 ·Q (*Q)) <Q 𝑔))
1911, 18bitrd 281 . . . . . 6 ((𝑔QQ) → (𝑥 <Q (𝑔 ·Q ) ↔ (𝑥 ·Q (*Q)) <Q 𝑔))
201, 2, 19syl2an 597 . . . . 5 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → (𝑥 <Q (𝑔 ·Q ) ↔ (𝑥 ·Q (*Q)) <Q 𝑔))
21 prcdnq 10417 . . . . . 6 ((𝐴P𝑔𝐴) → ((𝑥 ·Q (*Q)) <Q 𝑔 → (𝑥 ·Q (*Q)) ∈ 𝐴))
2221adantr 483 . . . . 5 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → ((𝑥 ·Q (*Q)) <Q 𝑔 → (𝑥 ·Q (*Q)) ∈ 𝐴))
2320, 22sylbid 242 . . . 4 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → (𝑥 <Q (𝑔 ·Q ) → (𝑥 ·Q (*Q)) ∈ 𝐴))
24 df-mp 10408 . . . . . . . . 9 ·P = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦 ·Q 𝑧)})
25 mulclnq 10371 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) ∈ Q)
2624, 25genpprecl 10425 . . . . . . . 8 ((𝐴P𝐵P) → (((𝑥 ·Q (*Q)) ∈ 𝐴𝐵) → ((𝑥 ·Q (*Q)) ·Q ) ∈ (𝐴 ·P 𝐵)))
2726exp4b 433 . . . . . . 7 (𝐴P → (𝐵P → ((𝑥 ·Q (*Q)) ∈ 𝐴 → (𝐵 → ((𝑥 ·Q (*Q)) ·Q ) ∈ (𝐴 ·P 𝐵)))))
2827com34 91 . . . . . 6 (𝐴P → (𝐵P → (𝐵 → ((𝑥 ·Q (*Q)) ∈ 𝐴 → ((𝑥 ·Q (*Q)) ·Q ) ∈ (𝐴 ·P 𝐵)))))
2928imp32 421 . . . . 5 ((𝐴P ∧ (𝐵P𝐵)) → ((𝑥 ·Q (*Q)) ∈ 𝐴 → ((𝑥 ·Q (*Q)) ·Q ) ∈ (𝐴 ·P 𝐵)))
3029adantlr 713 . . . 4 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → ((𝑥 ·Q (*Q)) ∈ 𝐴 → ((𝑥 ·Q (*Q)) ·Q ) ∈ (𝐴 ·P 𝐵)))
3123, 30syld 47 . . 3 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → (𝑥 <Q (𝑔 ·Q ) → ((𝑥 ·Q (*Q)) ·Q ) ∈ (𝐴 ·P 𝐵)))
3231adantr 483 . 2 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 ·Q ) → ((𝑥 ·Q (*Q)) ·Q ) ∈ (𝐴 ·P 𝐵)))
332adantl 484 . . 3 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → Q)
34 mulassnq 10383 . . . . . 6 ((𝑥 ·Q (*Q)) ·Q ) = (𝑥 ·Q ((*Q) ·Q ))
35 mulcomnq 10377 . . . . . . . 8 ((*Q) ·Q ) = ( ·Q (*Q))
3635, 13syl5eq 2870 . . . . . . 7 (Q → ((*Q) ·Q ) = 1Q)
3736oveq2d 7174 . . . . . 6 (Q → (𝑥 ·Q ((*Q) ·Q )) = (𝑥 ·Q 1Q))
3834, 37syl5eq 2870 . . . . 5 (Q → ((𝑥 ·Q (*Q)) ·Q ) = (𝑥 ·Q 1Q))
39 mulidnq 10387 . . . . 5 (𝑥Q → (𝑥 ·Q 1Q) = 𝑥)
4038, 39sylan9eq 2878 . . . 4 ((Q𝑥Q) → ((𝑥 ·Q (*Q)) ·Q ) = 𝑥)
4140eleq1d 2899 . . 3 ((Q𝑥Q) → (((𝑥 ·Q (*Q)) ·Q ) ∈ (𝐴 ·P 𝐵) ↔ 𝑥 ∈ (𝐴 ·P 𝐵)))
4233, 41sylan 582 . 2 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (((𝑥 ·Q (*Q)) ·Q ) ∈ (𝐴 ·P 𝐵) ↔ 𝑥 ∈ (𝐴 ·P 𝐵)))
4332, 42sylibd 241 1 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 ·Q ) → 𝑥 ∈ (𝐴 ·P 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2114   class class class wbr 5068  cfv 6357  (class class class)co 7158  Qcnq 10276  1Qc1q 10277   ·Q cmq 10280  *Qcrq 10281   <Q cltq 10282  Pcnp 10283   ·P cmp 10286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-omul 8109  df-er 8291  df-ni 10296  df-mi 10298  df-lti 10299  df-mpq 10333  df-ltpq 10334  df-enq 10335  df-nq 10336  df-erq 10337  df-mq 10339  df-1nq 10340  df-rq 10341  df-ltnq 10342  df-np 10405  df-mp 10408
This theorem is referenced by:  mulclpr  10444
  Copyright terms: Public domain W3C validator