MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulclprlem Structured version   Visualization version   GIF version

Theorem mulclprlem 10163
Description: Lemma to prove downward closure in positive real multiplication. Part of proof of Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 14-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
mulclprlem ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 ·Q ) → 𝑥 ∈ (𝐴 ·P 𝐵)))
Distinct variable groups:   𝑥,𝑔,   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑔,)   𝐵(𝑔,)

Proof of Theorem mulclprlem
Dummy variables 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elprnq 10135 . . . . . 6 ((𝐴P𝑔𝐴) → 𝑔Q)
2 elprnq 10135 . . . . . 6 ((𝐵P𝐵) → Q)
3 recclnq 10110 . . . . . . . . 9 (Q → (*Q) ∈ Q)
43adantl 475 . . . . . . . 8 ((𝑔QQ) → (*Q) ∈ Q)
5 vex 3417 . . . . . . . . 9 𝑥 ∈ V
6 ovex 6942 . . . . . . . . 9 (𝑔 ·Q ) ∈ V
7 ltmnq 10116 . . . . . . . . 9 (𝑤Q → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
8 fvex 6450 . . . . . . . . 9 (*Q) ∈ V
9 mulcomnq 10097 . . . . . . . . 9 (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦)
105, 6, 7, 8, 9caovord2 7111 . . . . . . . 8 ((*Q) ∈ Q → (𝑥 <Q (𝑔 ·Q ) ↔ (𝑥 ·Q (*Q)) <Q ((𝑔 ·Q ) ·Q (*Q))))
114, 10syl 17 . . . . . . 7 ((𝑔QQ) → (𝑥 <Q (𝑔 ·Q ) ↔ (𝑥 ·Q (*Q)) <Q ((𝑔 ·Q ) ·Q (*Q))))
12 mulassnq 10103 . . . . . . . . . 10 ((𝑔 ·Q ) ·Q (*Q)) = (𝑔 ·Q ( ·Q (*Q)))
13 recidnq 10109 . . . . . . . . . . 11 (Q → ( ·Q (*Q)) = 1Q)
1413oveq2d 6926 . . . . . . . . . 10 (Q → (𝑔 ·Q ( ·Q (*Q))) = (𝑔 ·Q 1Q))
1512, 14syl5eq 2873 . . . . . . . . 9 (Q → ((𝑔 ·Q ) ·Q (*Q)) = (𝑔 ·Q 1Q))
16 mulidnq 10107 . . . . . . . . 9 (𝑔Q → (𝑔 ·Q 1Q) = 𝑔)
1715, 16sylan9eqr 2883 . . . . . . . 8 ((𝑔QQ) → ((𝑔 ·Q ) ·Q (*Q)) = 𝑔)
1817breq2d 4887 . . . . . . 7 ((𝑔QQ) → ((𝑥 ·Q (*Q)) <Q ((𝑔 ·Q ) ·Q (*Q)) ↔ (𝑥 ·Q (*Q)) <Q 𝑔))
1911, 18bitrd 271 . . . . . 6 ((𝑔QQ) → (𝑥 <Q (𝑔 ·Q ) ↔ (𝑥 ·Q (*Q)) <Q 𝑔))
201, 2, 19syl2an 589 . . . . 5 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → (𝑥 <Q (𝑔 ·Q ) ↔ (𝑥 ·Q (*Q)) <Q 𝑔))
21 prcdnq 10137 . . . . . 6 ((𝐴P𝑔𝐴) → ((𝑥 ·Q (*Q)) <Q 𝑔 → (𝑥 ·Q (*Q)) ∈ 𝐴))
2221adantr 474 . . . . 5 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → ((𝑥 ·Q (*Q)) <Q 𝑔 → (𝑥 ·Q (*Q)) ∈ 𝐴))
2320, 22sylbid 232 . . . 4 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → (𝑥 <Q (𝑔 ·Q ) → (𝑥 ·Q (*Q)) ∈ 𝐴))
24 df-mp 10128 . . . . . . . . 9 ·P = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦 ·Q 𝑧)})
25 mulclnq 10091 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) ∈ Q)
2624, 25genpprecl 10145 . . . . . . . 8 ((𝐴P𝐵P) → (((𝑥 ·Q (*Q)) ∈ 𝐴𝐵) → ((𝑥 ·Q (*Q)) ·Q ) ∈ (𝐴 ·P 𝐵)))
2726exp4b 423 . . . . . . 7 (𝐴P → (𝐵P → ((𝑥 ·Q (*Q)) ∈ 𝐴 → (𝐵 → ((𝑥 ·Q (*Q)) ·Q ) ∈ (𝐴 ·P 𝐵)))))
2827com34 91 . . . . . 6 (𝐴P → (𝐵P → (𝐵 → ((𝑥 ·Q (*Q)) ∈ 𝐴 → ((𝑥 ·Q (*Q)) ·Q ) ∈ (𝐴 ·P 𝐵)))))
2928imp32 411 . . . . 5 ((𝐴P ∧ (𝐵P𝐵)) → ((𝑥 ·Q (*Q)) ∈ 𝐴 → ((𝑥 ·Q (*Q)) ·Q ) ∈ (𝐴 ·P 𝐵)))
3029adantlr 706 . . . 4 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → ((𝑥 ·Q (*Q)) ∈ 𝐴 → ((𝑥 ·Q (*Q)) ·Q ) ∈ (𝐴 ·P 𝐵)))
3123, 30syld 47 . . 3 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → (𝑥 <Q (𝑔 ·Q ) → ((𝑥 ·Q (*Q)) ·Q ) ∈ (𝐴 ·P 𝐵)))
3231adantr 474 . 2 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 ·Q ) → ((𝑥 ·Q (*Q)) ·Q ) ∈ (𝐴 ·P 𝐵)))
332adantl 475 . . 3 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → Q)
34 mulassnq 10103 . . . . . 6 ((𝑥 ·Q (*Q)) ·Q ) = (𝑥 ·Q ((*Q) ·Q ))
35 mulcomnq 10097 . . . . . . . 8 ((*Q) ·Q ) = ( ·Q (*Q))
3635, 13syl5eq 2873 . . . . . . 7 (Q → ((*Q) ·Q ) = 1Q)
3736oveq2d 6926 . . . . . 6 (Q → (𝑥 ·Q ((*Q) ·Q )) = (𝑥 ·Q 1Q))
3834, 37syl5eq 2873 . . . . 5 (Q → ((𝑥 ·Q (*Q)) ·Q ) = (𝑥 ·Q 1Q))
39 mulidnq 10107 . . . . 5 (𝑥Q → (𝑥 ·Q 1Q) = 𝑥)
4038, 39sylan9eq 2881 . . . 4 ((Q𝑥Q) → ((𝑥 ·Q (*Q)) ·Q ) = 𝑥)
4140eleq1d 2891 . . 3 ((Q𝑥Q) → (((𝑥 ·Q (*Q)) ·Q ) ∈ (𝐴 ·P 𝐵) ↔ 𝑥 ∈ (𝐴 ·P 𝐵)))
4233, 41sylan 575 . 2 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (((𝑥 ·Q (*Q)) ·Q ) ∈ (𝐴 ·P 𝐵) ↔ 𝑥 ∈ (𝐴 ·P 𝐵)))
4332, 42sylibd 231 1 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 ·Q ) → 𝑥 ∈ (𝐴 ·P 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wcel 2164   class class class wbr 4875  cfv 6127  (class class class)co 6910  Qcnq 9996  1Qc1q 9997   ·Q cmq 10000  *Qcrq 10001   <Q cltq 10002  Pcnp 10003   ·P cmp 10006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-inf2 8822
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-omul 7836  df-er 8014  df-ni 10016  df-mi 10018  df-lti 10019  df-mpq 10053  df-ltpq 10054  df-enq 10055  df-nq 10056  df-erq 10057  df-mq 10059  df-1nq 10060  df-rq 10061  df-ltnq 10062  df-np 10125  df-mp 10128
This theorem is referenced by:  mulclpr  10164
  Copyright terms: Public domain W3C validator