MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulclprlem Structured version   Visualization version   GIF version

Theorem mulclprlem 10972
Description: Lemma to prove downward closure in positive real multiplication. Part of proof of Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 14-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
mulclprlem ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 ·Q ) → 𝑥 ∈ (𝐴 ·P 𝐵)))
Distinct variable groups:   𝑥,𝑔,   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑔,)   𝐵(𝑔,)

Proof of Theorem mulclprlem
Dummy variables 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elprnq 10944 . . . . . 6 ((𝐴P𝑔𝐴) → 𝑔Q)
2 elprnq 10944 . . . . . 6 ((𝐵P𝐵) → Q)
3 recclnq 10919 . . . . . . . . 9 (Q → (*Q) ∈ Q)
43adantl 481 . . . . . . . 8 ((𝑔QQ) → (*Q) ∈ Q)
5 vex 3451 . . . . . . . . 9 𝑥 ∈ V
6 ovex 7420 . . . . . . . . 9 (𝑔 ·Q ) ∈ V
7 ltmnq 10925 . . . . . . . . 9 (𝑤Q → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
8 fvex 6871 . . . . . . . . 9 (*Q) ∈ V
9 mulcomnq 10906 . . . . . . . . 9 (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦)
105, 6, 7, 8, 9caovord2 7601 . . . . . . . 8 ((*Q) ∈ Q → (𝑥 <Q (𝑔 ·Q ) ↔ (𝑥 ·Q (*Q)) <Q ((𝑔 ·Q ) ·Q (*Q))))
114, 10syl 17 . . . . . . 7 ((𝑔QQ) → (𝑥 <Q (𝑔 ·Q ) ↔ (𝑥 ·Q (*Q)) <Q ((𝑔 ·Q ) ·Q (*Q))))
12 mulassnq 10912 . . . . . . . . . 10 ((𝑔 ·Q ) ·Q (*Q)) = (𝑔 ·Q ( ·Q (*Q)))
13 recidnq 10918 . . . . . . . . . . 11 (Q → ( ·Q (*Q)) = 1Q)
1413oveq2d 7403 . . . . . . . . . 10 (Q → (𝑔 ·Q ( ·Q (*Q))) = (𝑔 ·Q 1Q))
1512, 14eqtrid 2776 . . . . . . . . 9 (Q → ((𝑔 ·Q ) ·Q (*Q)) = (𝑔 ·Q 1Q))
16 mulidnq 10916 . . . . . . . . 9 (𝑔Q → (𝑔 ·Q 1Q) = 𝑔)
1715, 16sylan9eqr 2786 . . . . . . . 8 ((𝑔QQ) → ((𝑔 ·Q ) ·Q (*Q)) = 𝑔)
1817breq2d 5119 . . . . . . 7 ((𝑔QQ) → ((𝑥 ·Q (*Q)) <Q ((𝑔 ·Q ) ·Q (*Q)) ↔ (𝑥 ·Q (*Q)) <Q 𝑔))
1911, 18bitrd 279 . . . . . 6 ((𝑔QQ) → (𝑥 <Q (𝑔 ·Q ) ↔ (𝑥 ·Q (*Q)) <Q 𝑔))
201, 2, 19syl2an 596 . . . . 5 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → (𝑥 <Q (𝑔 ·Q ) ↔ (𝑥 ·Q (*Q)) <Q 𝑔))
21 prcdnq 10946 . . . . . 6 ((𝐴P𝑔𝐴) → ((𝑥 ·Q (*Q)) <Q 𝑔 → (𝑥 ·Q (*Q)) ∈ 𝐴))
2221adantr 480 . . . . 5 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → ((𝑥 ·Q (*Q)) <Q 𝑔 → (𝑥 ·Q (*Q)) ∈ 𝐴))
2320, 22sylbid 240 . . . 4 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → (𝑥 <Q (𝑔 ·Q ) → (𝑥 ·Q (*Q)) ∈ 𝐴))
24 df-mp 10937 . . . . . . . . 9 ·P = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦 ·Q 𝑧)})
25 mulclnq 10900 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) ∈ Q)
2624, 25genpprecl 10954 . . . . . . . 8 ((𝐴P𝐵P) → (((𝑥 ·Q (*Q)) ∈ 𝐴𝐵) → ((𝑥 ·Q (*Q)) ·Q ) ∈ (𝐴 ·P 𝐵)))
2726exp4b 430 . . . . . . 7 (𝐴P → (𝐵P → ((𝑥 ·Q (*Q)) ∈ 𝐴 → (𝐵 → ((𝑥 ·Q (*Q)) ·Q ) ∈ (𝐴 ·P 𝐵)))))
2827com34 91 . . . . . 6 (𝐴P → (𝐵P → (𝐵 → ((𝑥 ·Q (*Q)) ∈ 𝐴 → ((𝑥 ·Q (*Q)) ·Q ) ∈ (𝐴 ·P 𝐵)))))
2928imp32 418 . . . . 5 ((𝐴P ∧ (𝐵P𝐵)) → ((𝑥 ·Q (*Q)) ∈ 𝐴 → ((𝑥 ·Q (*Q)) ·Q ) ∈ (𝐴 ·P 𝐵)))
3029adantlr 715 . . . 4 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → ((𝑥 ·Q (*Q)) ∈ 𝐴 → ((𝑥 ·Q (*Q)) ·Q ) ∈ (𝐴 ·P 𝐵)))
3123, 30syld 47 . . 3 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → (𝑥 <Q (𝑔 ·Q ) → ((𝑥 ·Q (*Q)) ·Q ) ∈ (𝐴 ·P 𝐵)))
3231adantr 480 . 2 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 ·Q ) → ((𝑥 ·Q (*Q)) ·Q ) ∈ (𝐴 ·P 𝐵)))
332adantl 481 . . 3 (((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) → Q)
34 mulassnq 10912 . . . . . 6 ((𝑥 ·Q (*Q)) ·Q ) = (𝑥 ·Q ((*Q) ·Q ))
35 mulcomnq 10906 . . . . . . . 8 ((*Q) ·Q ) = ( ·Q (*Q))
3635, 13eqtrid 2776 . . . . . . 7 (Q → ((*Q) ·Q ) = 1Q)
3736oveq2d 7403 . . . . . 6 (Q → (𝑥 ·Q ((*Q) ·Q )) = (𝑥 ·Q 1Q))
3834, 37eqtrid 2776 . . . . 5 (Q → ((𝑥 ·Q (*Q)) ·Q ) = (𝑥 ·Q 1Q))
39 mulidnq 10916 . . . . 5 (𝑥Q → (𝑥 ·Q 1Q) = 𝑥)
4038, 39sylan9eq 2784 . . . 4 ((Q𝑥Q) → ((𝑥 ·Q (*Q)) ·Q ) = 𝑥)
4140eleq1d 2813 . . 3 ((Q𝑥Q) → (((𝑥 ·Q (*Q)) ·Q ) ∈ (𝐴 ·P 𝐵) ↔ 𝑥 ∈ (𝐴 ·P 𝐵)))
4233, 41sylan 580 . 2 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (((𝑥 ·Q (*Q)) ·Q ) ∈ (𝐴 ·P 𝐵) ↔ 𝑥 ∈ (𝐴 ·P 𝐵)))
4332, 42sylibd 239 1 ((((𝐴P𝑔𝐴) ∧ (𝐵P𝐵)) ∧ 𝑥Q) → (𝑥 <Q (𝑔 ·Q ) → 𝑥 ∈ (𝐴 ·P 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  Qcnq 10805  1Qc1q 10806   ·Q cmq 10809  *Qcrq 10810   <Q cltq 10811  Pcnp 10812   ·P cmp 10815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-omul 8439  df-er 8671  df-ni 10825  df-mi 10827  df-lti 10828  df-mpq 10862  df-ltpq 10863  df-enq 10864  df-nq 10865  df-erq 10866  df-mq 10868  df-1nq 10869  df-rq 10870  df-ltnq 10871  df-np 10934  df-mp 10937
This theorem is referenced by:  mulclpr  10973
  Copyright terms: Public domain W3C validator