MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distrlem4pr Structured version   Visualization version   GIF version

Theorem distrlem4pr 11095
Description: Lemma for distributive law for positive reals. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
distrlem4pr (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑓,𝐴   𝑥,𝐵,𝑦,𝑧,𝑓   𝑥,𝐶,𝑦,𝑧,𝑓

Proof of Theorem distrlem4pr
Dummy variables 𝑤 𝑣 𝑢 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1192 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝐵P)
2 simprlr 779 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝑦𝐵)
3 elprnq 11060 . . . . 5 ((𝐵P𝑦𝐵) → 𝑦Q)
41, 2, 3syl2anc 583 . . . 4 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝑦Q)
5 simp1 1136 . . . . 5 ((𝐴P𝐵P𝐶P) → 𝐴P)
6 simprl 770 . . . . 5 (((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶)) → 𝑓𝐴)
7 elprnq 11060 . . . . 5 ((𝐴P𝑓𝐴) → 𝑓Q)
85, 6, 7syl2an 595 . . . 4 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝑓Q)
9 simpl3 1193 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝐶P)
10 simprrr 781 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝑧𝐶)
11 elprnq 11060 . . . . 5 ((𝐶P𝑧𝐶) → 𝑧Q)
129, 10, 11syl2anc 583 . . . 4 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝑧Q)
13 vex 3492 . . . . . 6 𝑥 ∈ V
14 vex 3492 . . . . . 6 𝑓 ∈ V
15 ltmnq 11041 . . . . . 6 (𝑢Q → (𝑤 <Q 𝑣 ↔ (𝑢 ·Q 𝑤) <Q (𝑢 ·Q 𝑣)))
16 vex 3492 . . . . . 6 𝑦 ∈ V
17 mulcomnq 11022 . . . . . 6 (𝑤 ·Q 𝑣) = (𝑣 ·Q 𝑤)
1813, 14, 15, 16, 17caovord2 7662 . . . . 5 (𝑦Q → (𝑥 <Q 𝑓 ↔ (𝑥 ·Q 𝑦) <Q (𝑓 ·Q 𝑦)))
19 mulclnq 11016 . . . . . 6 ((𝑓Q𝑧Q) → (𝑓 ·Q 𝑧) ∈ Q)
20 ovex 7481 . . . . . . 7 (𝑥 ·Q 𝑦) ∈ V
21 ovex 7481 . . . . . . 7 (𝑓 ·Q 𝑦) ∈ V
22 ltanq 11040 . . . . . . 7 (𝑢Q → (𝑤 <Q 𝑣 ↔ (𝑢 +Q 𝑤) <Q (𝑢 +Q 𝑣)))
23 ovex 7481 . . . . . . 7 (𝑓 ·Q 𝑧) ∈ V
24 addcomnq 11020 . . . . . . 7 (𝑤 +Q 𝑣) = (𝑣 +Q 𝑤)
2520, 21, 22, 23, 24caovord2 7662 . . . . . 6 ((𝑓 ·Q 𝑧) ∈ Q → ((𝑥 ·Q 𝑦) <Q (𝑓 ·Q 𝑦) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))))
2619, 25syl 17 . . . . 5 ((𝑓Q𝑧Q) → ((𝑥 ·Q 𝑦) <Q (𝑓 ·Q 𝑦) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))))
2718, 26sylan9bb 509 . . . 4 ((𝑦Q ∧ (𝑓Q𝑧Q)) → (𝑥 <Q 𝑓 ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))))
284, 8, 12, 27syl12anc 836 . . 3 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝑥 <Q 𝑓 ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))))
29 simpl1 1191 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝐴P)
30 addclpr 11087 . . . . . . 7 ((𝐵P𝐶P) → (𝐵 +P 𝐶) ∈ P)
31303adant1 1130 . . . . . 6 ((𝐴P𝐵P𝐶P) → (𝐵 +P 𝐶) ∈ P)
3231adantr 480 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝐵 +P 𝐶) ∈ P)
33 mulclpr 11089 . . . . 5 ((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) → (𝐴 ·P (𝐵 +P 𝐶)) ∈ P)
3429, 32, 33syl2anc 583 . . . 4 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝐴 ·P (𝐵 +P 𝐶)) ∈ P)
35 distrnq 11030 . . . . 5 (𝑓 ·Q (𝑦 +Q 𝑧)) = ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))
36 simprrl 780 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝑓𝐴)
37 df-plp 11052 . . . . . . . . 9 +P = (𝑢P, 𝑣P ↦ {𝑤 ∣ ∃𝑔𝑢𝑣 𝑤 = (𝑔 +Q )})
38 addclnq 11014 . . . . . . . . 9 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
3937, 38genpprecl 11070 . . . . . . . 8 ((𝐵P𝐶P) → ((𝑦𝐵𝑧𝐶) → (𝑦 +Q 𝑧) ∈ (𝐵 +P 𝐶)))
4039imp 406 . . . . . . 7 (((𝐵P𝐶P) ∧ (𝑦𝐵𝑧𝐶)) → (𝑦 +Q 𝑧) ∈ (𝐵 +P 𝐶))
411, 9, 2, 10, 40syl22anc 838 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝑦 +Q 𝑧) ∈ (𝐵 +P 𝐶))
42 df-mp 11053 . . . . . . . 8 ·P = (𝑢P, 𝑣P ↦ {𝑤 ∣ ∃𝑔𝑢𝑣 𝑤 = (𝑔 ·Q )})
43 mulclnq 11016 . . . . . . . 8 ((𝑔QQ) → (𝑔 ·Q ) ∈ Q)
4442, 43genpprecl 11070 . . . . . . 7 ((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) → ((𝑓𝐴 ∧ (𝑦 +Q 𝑧) ∈ (𝐵 +P 𝐶)) → (𝑓 ·Q (𝑦 +Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
4544imp 406 . . . . . 6 (((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) ∧ (𝑓𝐴 ∧ (𝑦 +Q 𝑧) ∈ (𝐵 +P 𝐶))) → (𝑓 ·Q (𝑦 +Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
4629, 32, 36, 41, 45syl22anc 838 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝑓 ·Q (𝑦 +Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
4735, 46eqeltrrid 2849 . . . 4 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
48 prcdnq 11062 . . . 4 (((𝐴 ·P (𝐵 +P 𝐶)) ∈ P ∧ ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))) → (((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
4934, 47, 48syl2anc 583 . . 3 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
5028, 49sylbid 240 . 2 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝑥 <Q 𝑓 → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
51 simpll 766 . . . . 5 (((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶)) → 𝑥𝐴)
52 elprnq 11060 . . . . 5 ((𝐴P𝑥𝐴) → 𝑥Q)
535, 51, 52syl2an 595 . . . 4 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝑥Q)
54 vex 3492 . . . . . 6 𝑧 ∈ V
5514, 13, 15, 54, 17caovord2 7662 . . . . 5 (𝑧Q → (𝑓 <Q 𝑥 ↔ (𝑓 ·Q 𝑧) <Q (𝑥 ·Q 𝑧)))
56 mulclnq 11016 . . . . . 6 ((𝑥Q𝑦Q) → (𝑥 ·Q 𝑦) ∈ Q)
57 ltanq 11040 . . . . . 6 ((𝑥 ·Q 𝑦) ∈ Q → ((𝑓 ·Q 𝑧) <Q (𝑥 ·Q 𝑧) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))))
5856, 57syl 17 . . . . 5 ((𝑥Q𝑦Q) → ((𝑓 ·Q 𝑧) <Q (𝑥 ·Q 𝑧) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))))
5955, 58sylan9bbr 510 . . . 4 (((𝑥Q𝑦Q) ∧ 𝑧Q) → (𝑓 <Q 𝑥 ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))))
6053, 4, 12, 59syl21anc 837 . . 3 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝑓 <Q 𝑥 ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))))
61 distrnq 11030 . . . . 5 (𝑥 ·Q (𝑦 +Q 𝑧)) = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))
62 simprll 778 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝑥𝐴)
6342, 43genpprecl 11070 . . . . . . 7 ((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) → ((𝑥𝐴 ∧ (𝑦 +Q 𝑧) ∈ (𝐵 +P 𝐶)) → (𝑥 ·Q (𝑦 +Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
6463imp 406 . . . . . 6 (((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) ∧ (𝑥𝐴 ∧ (𝑦 +Q 𝑧) ∈ (𝐵 +P 𝐶))) → (𝑥 ·Q (𝑦 +Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
6529, 32, 62, 41, 64syl22anc 838 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝑥 ·Q (𝑦 +Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
6661, 65eqeltrrid 2849 . . . 4 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
67 prcdnq 11062 . . . 4 (((𝐴 ·P (𝐵 +P 𝐶)) ∈ P ∧ ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))) → (((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
6834, 66, 67syl2anc 583 . . 3 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
6960, 68sylbid 240 . 2 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝑓 <Q 𝑥 → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
70 ltsonq 11038 . . . . 5 <Q Or Q
71 sotrieq 5638 . . . . 5 (( <Q Or Q ∧ (𝑥Q𝑓Q)) → (𝑥 = 𝑓 ↔ ¬ (𝑥 <Q 𝑓𝑓 <Q 𝑥)))
7270, 71mpan 689 . . . 4 ((𝑥Q𝑓Q) → (𝑥 = 𝑓 ↔ ¬ (𝑥 <Q 𝑓𝑓 <Q 𝑥)))
7353, 8, 72syl2anc 583 . . 3 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝑥 = 𝑓 ↔ ¬ (𝑥 <Q 𝑓𝑓 <Q 𝑥)))
74 oveq1 7455 . . . . . . 7 (𝑥 = 𝑓 → (𝑥 ·Q 𝑧) = (𝑓 ·Q 𝑧))
7574oveq2d 7464 . . . . . 6 (𝑥 = 𝑓 → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)))
7661, 75eqtrid 2792 . . . . 5 (𝑥 = 𝑓 → (𝑥 ·Q (𝑦 +Q 𝑧)) = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)))
7776eleq1d 2829 . . . 4 (𝑥 = 𝑓 → ((𝑥 ·Q (𝑦 +Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
7865, 77syl5ibcom 245 . . 3 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝑥 = 𝑓 → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
7973, 78sylbird 260 . 2 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (¬ (𝑥 <Q 𝑓𝑓 <Q 𝑥) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
8050, 69, 79ecase3d 1034 1 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087  wcel 2108   class class class wbr 5166   Or wor 5606  (class class class)co 7448  Qcnq 10921   +Q cplq 10924   ·Q cmq 10925   <Q cltq 10927  Pcnp 10928   +P cpp 10930   ·P cmp 10931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-omul 8527  df-er 8763  df-ni 10941  df-pli 10942  df-mi 10943  df-lti 10944  df-plpq 10977  df-mpq 10978  df-ltpq 10979  df-enq 10980  df-nq 10981  df-erq 10982  df-plq 10983  df-mq 10984  df-1nq 10985  df-rq 10986  df-ltnq 10987  df-np 11050  df-plp 11052  df-mp 11053
This theorem is referenced by:  distrlem5pr  11096
  Copyright terms: Public domain W3C validator