MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distrlem4pr Structured version   Visualization version   GIF version

Theorem distrlem4pr 10782
Description: Lemma for distributive law for positive reals. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
distrlem4pr (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑓,𝐴   𝑥,𝐵,𝑦,𝑧,𝑓   𝑥,𝐶,𝑦,𝑧,𝑓

Proof of Theorem distrlem4pr
Dummy variables 𝑤 𝑣 𝑢 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1191 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝐵P)
2 simprlr 777 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝑦𝐵)
3 elprnq 10747 . . . . 5 ((𝐵P𝑦𝐵) → 𝑦Q)
41, 2, 3syl2anc 584 . . . 4 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝑦Q)
5 simp1 1135 . . . . 5 ((𝐴P𝐵P𝐶P) → 𝐴P)
6 simprl 768 . . . . 5 (((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶)) → 𝑓𝐴)
7 elprnq 10747 . . . . 5 ((𝐴P𝑓𝐴) → 𝑓Q)
85, 6, 7syl2an 596 . . . 4 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝑓Q)
9 simpl3 1192 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝐶P)
10 simprrr 779 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝑧𝐶)
11 elprnq 10747 . . . . 5 ((𝐶P𝑧𝐶) → 𝑧Q)
129, 10, 11syl2anc 584 . . . 4 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝑧Q)
13 vex 3436 . . . . . 6 𝑥 ∈ V
14 vex 3436 . . . . . 6 𝑓 ∈ V
15 ltmnq 10728 . . . . . 6 (𝑢Q → (𝑤 <Q 𝑣 ↔ (𝑢 ·Q 𝑤) <Q (𝑢 ·Q 𝑣)))
16 vex 3436 . . . . . 6 𝑦 ∈ V
17 mulcomnq 10709 . . . . . 6 (𝑤 ·Q 𝑣) = (𝑣 ·Q 𝑤)
1813, 14, 15, 16, 17caovord2 7484 . . . . 5 (𝑦Q → (𝑥 <Q 𝑓 ↔ (𝑥 ·Q 𝑦) <Q (𝑓 ·Q 𝑦)))
19 mulclnq 10703 . . . . . 6 ((𝑓Q𝑧Q) → (𝑓 ·Q 𝑧) ∈ Q)
20 ovex 7308 . . . . . . 7 (𝑥 ·Q 𝑦) ∈ V
21 ovex 7308 . . . . . . 7 (𝑓 ·Q 𝑦) ∈ V
22 ltanq 10727 . . . . . . 7 (𝑢Q → (𝑤 <Q 𝑣 ↔ (𝑢 +Q 𝑤) <Q (𝑢 +Q 𝑣)))
23 ovex 7308 . . . . . . 7 (𝑓 ·Q 𝑧) ∈ V
24 addcomnq 10707 . . . . . . 7 (𝑤 +Q 𝑣) = (𝑣 +Q 𝑤)
2520, 21, 22, 23, 24caovord2 7484 . . . . . 6 ((𝑓 ·Q 𝑧) ∈ Q → ((𝑥 ·Q 𝑦) <Q (𝑓 ·Q 𝑦) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))))
2619, 25syl 17 . . . . 5 ((𝑓Q𝑧Q) → ((𝑥 ·Q 𝑦) <Q (𝑓 ·Q 𝑦) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))))
2718, 26sylan9bb 510 . . . 4 ((𝑦Q ∧ (𝑓Q𝑧Q)) → (𝑥 <Q 𝑓 ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))))
284, 8, 12, 27syl12anc 834 . . 3 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝑥 <Q 𝑓 ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))))
29 simpl1 1190 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝐴P)
30 addclpr 10774 . . . . . . 7 ((𝐵P𝐶P) → (𝐵 +P 𝐶) ∈ P)
31303adant1 1129 . . . . . 6 ((𝐴P𝐵P𝐶P) → (𝐵 +P 𝐶) ∈ P)
3231adantr 481 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝐵 +P 𝐶) ∈ P)
33 mulclpr 10776 . . . . 5 ((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) → (𝐴 ·P (𝐵 +P 𝐶)) ∈ P)
3429, 32, 33syl2anc 584 . . . 4 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝐴 ·P (𝐵 +P 𝐶)) ∈ P)
35 distrnq 10717 . . . . 5 (𝑓 ·Q (𝑦 +Q 𝑧)) = ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧))
36 simprrl 778 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝑓𝐴)
37 df-plp 10739 . . . . . . . . 9 +P = (𝑢P, 𝑣P ↦ {𝑤 ∣ ∃𝑔𝑢𝑣 𝑤 = (𝑔 +Q )})
38 addclnq 10701 . . . . . . . . 9 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
3937, 38genpprecl 10757 . . . . . . . 8 ((𝐵P𝐶P) → ((𝑦𝐵𝑧𝐶) → (𝑦 +Q 𝑧) ∈ (𝐵 +P 𝐶)))
4039imp 407 . . . . . . 7 (((𝐵P𝐶P) ∧ (𝑦𝐵𝑧𝐶)) → (𝑦 +Q 𝑧) ∈ (𝐵 +P 𝐶))
411, 9, 2, 10, 40syl22anc 836 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝑦 +Q 𝑧) ∈ (𝐵 +P 𝐶))
42 df-mp 10740 . . . . . . . 8 ·P = (𝑢P, 𝑣P ↦ {𝑤 ∣ ∃𝑔𝑢𝑣 𝑤 = (𝑔 ·Q )})
43 mulclnq 10703 . . . . . . . 8 ((𝑔QQ) → (𝑔 ·Q ) ∈ Q)
4442, 43genpprecl 10757 . . . . . . 7 ((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) → ((𝑓𝐴 ∧ (𝑦 +Q 𝑧) ∈ (𝐵 +P 𝐶)) → (𝑓 ·Q (𝑦 +Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
4544imp 407 . . . . . 6 (((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) ∧ (𝑓𝐴 ∧ (𝑦 +Q 𝑧) ∈ (𝐵 +P 𝐶))) → (𝑓 ·Q (𝑦 +Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
4629, 32, 36, 41, 45syl22anc 836 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝑓 ·Q (𝑦 +Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
4735, 46eqeltrrid 2844 . . . 4 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
48 prcdnq 10749 . . . 4 (((𝐴 ·P (𝐵 +P 𝐶)) ∈ P ∧ ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))) → (((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
4934, 47, 48syl2anc 584 . . 3 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑓 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
5028, 49sylbid 239 . 2 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝑥 <Q 𝑓 → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
51 simpll 764 . . . . 5 (((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶)) → 𝑥𝐴)
52 elprnq 10747 . . . . 5 ((𝐴P𝑥𝐴) → 𝑥Q)
535, 51, 52syl2an 596 . . . 4 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝑥Q)
54 vex 3436 . . . . . 6 𝑧 ∈ V
5514, 13, 15, 54, 17caovord2 7484 . . . . 5 (𝑧Q → (𝑓 <Q 𝑥 ↔ (𝑓 ·Q 𝑧) <Q (𝑥 ·Q 𝑧)))
56 mulclnq 10703 . . . . . 6 ((𝑥Q𝑦Q) → (𝑥 ·Q 𝑦) ∈ Q)
57 ltanq 10727 . . . . . 6 ((𝑥 ·Q 𝑦) ∈ Q → ((𝑓 ·Q 𝑧) <Q (𝑥 ·Q 𝑧) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))))
5856, 57syl 17 . . . . 5 ((𝑥Q𝑦Q) → ((𝑓 ·Q 𝑧) <Q (𝑥 ·Q 𝑧) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))))
5955, 58sylan9bbr 511 . . . 4 (((𝑥Q𝑦Q) ∧ 𝑧Q) → (𝑓 <Q 𝑥 ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))))
6053, 4, 12, 59syl21anc 835 . . 3 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝑓 <Q 𝑥 ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))))
61 distrnq 10717 . . . . 5 (𝑥 ·Q (𝑦 +Q 𝑧)) = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))
62 simprll 776 . . . . . 6 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → 𝑥𝐴)
6342, 43genpprecl 10757 . . . . . . 7 ((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) → ((𝑥𝐴 ∧ (𝑦 +Q 𝑧) ∈ (𝐵 +P 𝐶)) → (𝑥 ·Q (𝑦 +Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
6463imp 407 . . . . . 6 (((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) ∧ (𝑥𝐴 ∧ (𝑦 +Q 𝑧) ∈ (𝐵 +P 𝐶))) → (𝑥 ·Q (𝑦 +Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
6529, 32, 62, 41, 64syl22anc 836 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝑥 ·Q (𝑦 +Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
6661, 65eqeltrrid 2844 . . . 4 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
67 prcdnq 10749 . . . 4 (((𝐴 ·P (𝐵 +P 𝐶)) ∈ P ∧ ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))) → (((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
6834, 66, 67syl2anc 584 . . 3 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) <Q ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
6960, 68sylbid 239 . 2 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝑓 <Q 𝑥 → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
70 ltsonq 10725 . . . . 5 <Q Or Q
71 sotrieq 5532 . . . . 5 (( <Q Or Q ∧ (𝑥Q𝑓Q)) → (𝑥 = 𝑓 ↔ ¬ (𝑥 <Q 𝑓𝑓 <Q 𝑥)))
7270, 71mpan 687 . . . 4 ((𝑥Q𝑓Q) → (𝑥 = 𝑓 ↔ ¬ (𝑥 <Q 𝑓𝑓 <Q 𝑥)))
7353, 8, 72syl2anc 584 . . 3 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝑥 = 𝑓 ↔ ¬ (𝑥 <Q 𝑓𝑓 <Q 𝑥)))
74 oveq1 7282 . . . . . . 7 (𝑥 = 𝑓 → (𝑥 ·Q 𝑧) = (𝑓 ·Q 𝑧))
7574oveq2d 7291 . . . . . 6 (𝑥 = 𝑓 → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)))
7661, 75eqtrid 2790 . . . . 5 (𝑥 = 𝑓 → (𝑥 ·Q (𝑦 +Q 𝑧)) = ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)))
7776eleq1d 2823 . . . 4 (𝑥 = 𝑓 → ((𝑥 ·Q (𝑦 +Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)) ↔ ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
7865, 77syl5ibcom 244 . . 3 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (𝑥 = 𝑓 → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
7973, 78sylbird 259 . 2 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → (¬ (𝑥 <Q 𝑓𝑓 <Q 𝑥) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶))))
8050, 69, 79ecase3d 1031 1 (((𝐴P𝐵P𝐶P) ∧ ((𝑥𝐴𝑦𝐵) ∧ (𝑓𝐴𝑧𝐶))) → ((𝑥 ·Q 𝑦) +Q (𝑓 ·Q 𝑧)) ∈ (𝐴 ·P (𝐵 +P 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086  wcel 2106   class class class wbr 5074   Or wor 5502  (class class class)co 7275  Qcnq 10608   +Q cplq 10611   ·Q cmq 10612   <Q cltq 10614  Pcnp 10615   +P cpp 10617   ·P cmp 10618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-omul 8302  df-er 8498  df-ni 10628  df-pli 10629  df-mi 10630  df-lti 10631  df-plpq 10664  df-mpq 10665  df-ltpq 10666  df-enq 10667  df-nq 10668  df-erq 10669  df-plq 10670  df-mq 10671  df-1nq 10672  df-rq 10673  df-ltnq 10674  df-np 10737  df-plp 10739  df-mp 10740
This theorem is referenced by:  distrlem5pr  10783
  Copyright terms: Public domain W3C validator