MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexprlem6 Structured version   Visualization version   GIF version

Theorem ltexprlem6 10994
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
Assertion
Ref Expression
ltexprlem6 (((𝐴P𝐵P) ∧ 𝐴𝐵) → (𝐴 +P 𝐶) ⊆ 𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶
Allowed substitution hint:   𝐶(𝑦)

Proof of Theorem ltexprlem6
Dummy variables 𝑧 𝑤 𝑣 𝑓 𝑔 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexprlem.1 . . . . . 6 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
21ltexprlem5 10993 . . . . 5 ((𝐵P𝐴𝐵) → 𝐶P)
3 df-plp 10936 . . . . . 6 +P = (𝑧P, 𝑦P ↦ {𝑓 ∣ ∃𝑔𝑧𝑦 𝑓 = (𝑔 +Q )})
4 addclnq 10898 . . . . . 6 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
53, 4genpelv 10953 . . . . 5 ((𝐴P𝐶P) → (𝑧 ∈ (𝐴 +P 𝐶) ↔ ∃𝑤𝐴𝑥𝐶 𝑧 = (𝑤 +Q 𝑥)))
62, 5sylan2 593 . . . 4 ((𝐴P ∧ (𝐵P𝐴𝐵)) → (𝑧 ∈ (𝐴 +P 𝐶) ↔ ∃𝑤𝐴𝑥𝐶 𝑧 = (𝑤 +Q 𝑥)))
71eqabri 2871 . . . . . . . . . . . 12 (𝑥𝐶 ↔ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))
8 elprnq 10944 . . . . . . . . . . . . . . . . . . 19 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑦 +Q 𝑥) ∈ Q)
9 addnqf 10901 . . . . . . . . . . . . . . . . . . . . . 22 +Q :(Q × Q)⟶Q
109fdmi 6699 . . . . . . . . . . . . . . . . . . . . 21 dom +Q = (Q × Q)
11 0nnq 10877 . . . . . . . . . . . . . . . . . . . . 21 ¬ ∅ ∈ Q
1210, 11ndmovrcl 7575 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 +Q 𝑥) ∈ Q → (𝑦Q𝑥Q))
1312simpld 494 . . . . . . . . . . . . . . . . . . 19 ((𝑦 +Q 𝑥) ∈ Q𝑦Q)
148, 13syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → 𝑦Q)
15 prub 10947 . . . . . . . . . . . . . . . . . 18 (((𝐴P𝑤𝐴) ∧ 𝑦Q) → (¬ 𝑦𝐴𝑤 <Q 𝑦))
1614, 15sylan2 593 . . . . . . . . . . . . . . . . 17 (((𝐴P𝑤𝐴) ∧ (𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) → (¬ 𝑦𝐴𝑤 <Q 𝑦))
1712simprd 495 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 +Q 𝑥) ∈ Q𝑥Q)
18 vex 3451 . . . . . . . . . . . . . . . . . . . . 21 𝑤 ∈ V
19 vex 3451 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ V
20 ltanq 10924 . . . . . . . . . . . . . . . . . . . . 21 (𝑢Q → (𝑧 <Q 𝑣 ↔ (𝑢 +Q 𝑧) <Q (𝑢 +Q 𝑣)))
21 vex 3451 . . . . . . . . . . . . . . . . . . . . 21 𝑥 ∈ V
22 addcomnq 10904 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 +Q 𝑣) = (𝑣 +Q 𝑧)
2318, 19, 20, 21, 22caovord2 7601 . . . . . . . . . . . . . . . . . . . 20 (𝑥Q → (𝑤 <Q 𝑦 ↔ (𝑤 +Q 𝑥) <Q (𝑦 +Q 𝑥)))
248, 17, 233syl 18 . . . . . . . . . . . . . . . . . . 19 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑤 <Q 𝑦 ↔ (𝑤 +Q 𝑥) <Q (𝑦 +Q 𝑥)))
25 prcdnq 10946 . . . . . . . . . . . . . . . . . . 19 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ((𝑤 +Q 𝑥) <Q (𝑦 +Q 𝑥) → (𝑤 +Q 𝑥) ∈ 𝐵))
2624, 25sylbid 240 . . . . . . . . . . . . . . . . . 18 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑤 <Q 𝑦 → (𝑤 +Q 𝑥) ∈ 𝐵))
2726adantl 481 . . . . . . . . . . . . . . . . 17 (((𝐴P𝑤𝐴) ∧ (𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) → (𝑤 <Q 𝑦 → (𝑤 +Q 𝑥) ∈ 𝐵))
2816, 27syld 47 . . . . . . . . . . . . . . . 16 (((𝐴P𝑤𝐴) ∧ (𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) → (¬ 𝑦𝐴 → (𝑤 +Q 𝑥) ∈ 𝐵))
2928exp32 420 . . . . . . . . . . . . . . 15 ((𝐴P𝑤𝐴) → (𝐵P → ((𝑦 +Q 𝑥) ∈ 𝐵 → (¬ 𝑦𝐴 → (𝑤 +Q 𝑥) ∈ 𝐵))))
3029com34 91 . . . . . . . . . . . . . 14 ((𝐴P𝑤𝐴) → (𝐵P → (¬ 𝑦𝐴 → ((𝑦 +Q 𝑥) ∈ 𝐵 → (𝑤 +Q 𝑥) ∈ 𝐵))))
3130imp4b 421 . . . . . . . . . . . . 13 (((𝐴P𝑤𝐴) ∧ 𝐵P) → ((¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑤 +Q 𝑥) ∈ 𝐵))
3231exlimdv 1933 . . . . . . . . . . . 12 (((𝐴P𝑤𝐴) ∧ 𝐵P) → (∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑤 +Q 𝑥) ∈ 𝐵))
337, 32biimtrid 242 . . . . . . . . . . 11 (((𝐴P𝑤𝐴) ∧ 𝐵P) → (𝑥𝐶 → (𝑤 +Q 𝑥) ∈ 𝐵))
3433exp31 419 . . . . . . . . . 10 (𝐴P → (𝑤𝐴 → (𝐵P → (𝑥𝐶 → (𝑤 +Q 𝑥) ∈ 𝐵))))
3534com23 86 . . . . . . . . 9 (𝐴P → (𝐵P → (𝑤𝐴 → (𝑥𝐶 → (𝑤 +Q 𝑥) ∈ 𝐵))))
3635imp43 427 . . . . . . . 8 (((𝐴P𝐵P) ∧ (𝑤𝐴𝑥𝐶)) → (𝑤 +Q 𝑥) ∈ 𝐵)
37 eleq1 2816 . . . . . . . . 9 (𝑧 = (𝑤 +Q 𝑥) → (𝑧𝐵 ↔ (𝑤 +Q 𝑥) ∈ 𝐵))
3837biimparc 479 . . . . . . . 8 (((𝑤 +Q 𝑥) ∈ 𝐵𝑧 = (𝑤 +Q 𝑥)) → 𝑧𝐵)
3936, 38sylan 580 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝑤𝐴𝑥𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑥)) → 𝑧𝐵)
4039exp31 419 . . . . . 6 ((𝐴P𝐵P) → ((𝑤𝐴𝑥𝐶) → (𝑧 = (𝑤 +Q 𝑥) → 𝑧𝐵)))
4140rexlimdvv 3193 . . . . 5 ((𝐴P𝐵P) → (∃𝑤𝐴𝑥𝐶 𝑧 = (𝑤 +Q 𝑥) → 𝑧𝐵))
4241adantrr 717 . . . 4 ((𝐴P ∧ (𝐵P𝐴𝐵)) → (∃𝑤𝐴𝑥𝐶 𝑧 = (𝑤 +Q 𝑥) → 𝑧𝐵))
436, 42sylbid 240 . . 3 ((𝐴P ∧ (𝐵P𝐴𝐵)) → (𝑧 ∈ (𝐴 +P 𝐶) → 𝑧𝐵))
4443ssrdv 3952 . 2 ((𝐴P ∧ (𝐵P𝐴𝐵)) → (𝐴 +P 𝐶) ⊆ 𝐵)
4544anassrs 467 1 (((𝐴P𝐵P) ∧ 𝐴𝐵) → (𝐴 +P 𝐶) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wrex 3053  wss 3914  wpss 3915   class class class wbr 5107   × cxp 5636  (class class class)co 7387  Qcnq 10805   +Q cplq 10808   <Q cltq 10811  Pcnp 10812   +P cpp 10814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-omul 8439  df-er 8671  df-ni 10825  df-pli 10826  df-mi 10827  df-lti 10828  df-plpq 10861  df-mpq 10862  df-ltpq 10863  df-enq 10864  df-nq 10865  df-erq 10866  df-plq 10867  df-mq 10868  df-1nq 10869  df-ltnq 10871  df-np 10934  df-plp 10936
This theorem is referenced by:  ltexpri  10996
  Copyright terms: Public domain W3C validator