MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexprlem6 Structured version   Visualization version   GIF version

Theorem ltexprlem6 10977
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
Assertion
Ref Expression
ltexprlem6 (((𝐴P𝐵P) ∧ 𝐴𝐵) → (𝐴 +P 𝐶) ⊆ 𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶
Allowed substitution hint:   𝐶(𝑦)

Proof of Theorem ltexprlem6
Dummy variables 𝑧 𝑤 𝑣 𝑓 𝑔 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexprlem.1 . . . . . 6 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
21ltexprlem5 10976 . . . . 5 ((𝐵P𝐴𝐵) → 𝐶P)
3 df-plp 10919 . . . . . 6 +P = (𝑧P, 𝑦P ↦ {𝑓 ∣ ∃𝑔𝑧𝑦 𝑓 = (𝑔 +Q )})
4 addclnq 10881 . . . . . 6 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
53, 4genpelv 10936 . . . . 5 ((𝐴P𝐶P) → (𝑧 ∈ (𝐴 +P 𝐶) ↔ ∃𝑤𝐴𝑥𝐶 𝑧 = (𝑤 +Q 𝑥)))
62, 5sylan2 593 . . . 4 ((𝐴P ∧ (𝐵P𝐴𝐵)) → (𝑧 ∈ (𝐴 +P 𝐶) ↔ ∃𝑤𝐴𝑥𝐶 𝑧 = (𝑤 +Q 𝑥)))
71eqabi 2881 . . . . . . . . . . . 12 (𝑥𝐶 ↔ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))
8 elprnq 10927 . . . . . . . . . . . . . . . . . . 19 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑦 +Q 𝑥) ∈ Q)
9 addnqf 10884 . . . . . . . . . . . . . . . . . . . . . 22 +Q :(Q × Q)⟶Q
109fdmi 6680 . . . . . . . . . . . . . . . . . . . . 21 dom +Q = (Q × Q)
11 0nnq 10860 . . . . . . . . . . . . . . . . . . . . 21 ¬ ∅ ∈ Q
1210, 11ndmovrcl 7540 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 +Q 𝑥) ∈ Q → (𝑦Q𝑥Q))
1312simpld 495 . . . . . . . . . . . . . . . . . . 19 ((𝑦 +Q 𝑥) ∈ Q𝑦Q)
148, 13syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → 𝑦Q)
15 prub 10930 . . . . . . . . . . . . . . . . . 18 (((𝐴P𝑤𝐴) ∧ 𝑦Q) → (¬ 𝑦𝐴𝑤 <Q 𝑦))
1614, 15sylan2 593 . . . . . . . . . . . . . . . . 17 (((𝐴P𝑤𝐴) ∧ (𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) → (¬ 𝑦𝐴𝑤 <Q 𝑦))
1712simprd 496 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 +Q 𝑥) ∈ Q𝑥Q)
18 vex 3449 . . . . . . . . . . . . . . . . . . . . 21 𝑤 ∈ V
19 vex 3449 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ V
20 ltanq 10907 . . . . . . . . . . . . . . . . . . . . 21 (𝑢Q → (𝑧 <Q 𝑣 ↔ (𝑢 +Q 𝑧) <Q (𝑢 +Q 𝑣)))
21 vex 3449 . . . . . . . . . . . . . . . . . . . . 21 𝑥 ∈ V
22 addcomnq 10887 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 +Q 𝑣) = (𝑣 +Q 𝑧)
2318, 19, 20, 21, 22caovord2 7566 . . . . . . . . . . . . . . . . . . . 20 (𝑥Q → (𝑤 <Q 𝑦 ↔ (𝑤 +Q 𝑥) <Q (𝑦 +Q 𝑥)))
248, 17, 233syl 18 . . . . . . . . . . . . . . . . . . 19 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑤 <Q 𝑦 ↔ (𝑤 +Q 𝑥) <Q (𝑦 +Q 𝑥)))
25 prcdnq 10929 . . . . . . . . . . . . . . . . . . 19 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ((𝑤 +Q 𝑥) <Q (𝑦 +Q 𝑥) → (𝑤 +Q 𝑥) ∈ 𝐵))
2624, 25sylbid 239 . . . . . . . . . . . . . . . . . 18 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑤 <Q 𝑦 → (𝑤 +Q 𝑥) ∈ 𝐵))
2726adantl 482 . . . . . . . . . . . . . . . . 17 (((𝐴P𝑤𝐴) ∧ (𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) → (𝑤 <Q 𝑦 → (𝑤 +Q 𝑥) ∈ 𝐵))
2816, 27syld 47 . . . . . . . . . . . . . . . 16 (((𝐴P𝑤𝐴) ∧ (𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) → (¬ 𝑦𝐴 → (𝑤 +Q 𝑥) ∈ 𝐵))
2928exp32 421 . . . . . . . . . . . . . . 15 ((𝐴P𝑤𝐴) → (𝐵P → ((𝑦 +Q 𝑥) ∈ 𝐵 → (¬ 𝑦𝐴 → (𝑤 +Q 𝑥) ∈ 𝐵))))
3029com34 91 . . . . . . . . . . . . . 14 ((𝐴P𝑤𝐴) → (𝐵P → (¬ 𝑦𝐴 → ((𝑦 +Q 𝑥) ∈ 𝐵 → (𝑤 +Q 𝑥) ∈ 𝐵))))
3130imp4b 422 . . . . . . . . . . . . 13 (((𝐴P𝑤𝐴) ∧ 𝐵P) → ((¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑤 +Q 𝑥) ∈ 𝐵))
3231exlimdv 1936 . . . . . . . . . . . 12 (((𝐴P𝑤𝐴) ∧ 𝐵P) → (∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑤 +Q 𝑥) ∈ 𝐵))
337, 32biimtrid 241 . . . . . . . . . . 11 (((𝐴P𝑤𝐴) ∧ 𝐵P) → (𝑥𝐶 → (𝑤 +Q 𝑥) ∈ 𝐵))
3433exp31 420 . . . . . . . . . 10 (𝐴P → (𝑤𝐴 → (𝐵P → (𝑥𝐶 → (𝑤 +Q 𝑥) ∈ 𝐵))))
3534com23 86 . . . . . . . . 9 (𝐴P → (𝐵P → (𝑤𝐴 → (𝑥𝐶 → (𝑤 +Q 𝑥) ∈ 𝐵))))
3635imp43 428 . . . . . . . 8 (((𝐴P𝐵P) ∧ (𝑤𝐴𝑥𝐶)) → (𝑤 +Q 𝑥) ∈ 𝐵)
37 eleq1 2825 . . . . . . . . 9 (𝑧 = (𝑤 +Q 𝑥) → (𝑧𝐵 ↔ (𝑤 +Q 𝑥) ∈ 𝐵))
3837biimparc 480 . . . . . . . 8 (((𝑤 +Q 𝑥) ∈ 𝐵𝑧 = (𝑤 +Q 𝑥)) → 𝑧𝐵)
3936, 38sylan 580 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝑤𝐴𝑥𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑥)) → 𝑧𝐵)
4039exp31 420 . . . . . 6 ((𝐴P𝐵P) → ((𝑤𝐴𝑥𝐶) → (𝑧 = (𝑤 +Q 𝑥) → 𝑧𝐵)))
4140rexlimdvv 3204 . . . . 5 ((𝐴P𝐵P) → (∃𝑤𝐴𝑥𝐶 𝑧 = (𝑤 +Q 𝑥) → 𝑧𝐵))
4241adantrr 715 . . . 4 ((𝐴P ∧ (𝐵P𝐴𝐵)) → (∃𝑤𝐴𝑥𝐶 𝑧 = (𝑤 +Q 𝑥) → 𝑧𝐵))
436, 42sylbid 239 . . 3 ((𝐴P ∧ (𝐵P𝐴𝐵)) → (𝑧 ∈ (𝐴 +P 𝐶) → 𝑧𝐵))
4443ssrdv 3950 . 2 ((𝐴P ∧ (𝐵P𝐴𝐵)) → (𝐴 +P 𝐶) ⊆ 𝐵)
4544anassrs 468 1 (((𝐴P𝐵P) ∧ 𝐴𝐵) → (𝐴 +P 𝐶) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  {cab 2713  wrex 3073  wss 3910  wpss 3911   class class class wbr 5105   × cxp 5631  (class class class)co 7357  Qcnq 10788   +Q cplq 10791   <Q cltq 10794  Pcnp 10795   +P cpp 10797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-omul 8417  df-er 8648  df-ni 10808  df-pli 10809  df-mi 10810  df-lti 10811  df-plpq 10844  df-mpq 10845  df-ltpq 10846  df-enq 10847  df-nq 10848  df-erq 10849  df-plq 10850  df-mq 10851  df-1nq 10852  df-ltnq 10854  df-np 10917  df-plp 10919
This theorem is referenced by:  ltexpri  10979
  Copyright terms: Public domain W3C validator