MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexprlem6 Structured version   Visualization version   GIF version

Theorem ltexprlem6 10298
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
Assertion
Ref Expression
ltexprlem6 (((𝐴P𝐵P) ∧ 𝐴𝐵) → (𝐴 +P 𝐶) ⊆ 𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶
Allowed substitution hint:   𝐶(𝑦)

Proof of Theorem ltexprlem6
Dummy variables 𝑧 𝑤 𝑣 𝑓 𝑔 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexprlem.1 . . . . . 6 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
21ltexprlem5 10297 . . . . 5 ((𝐵P𝐴𝐵) → 𝐶P)
3 df-plp 10240 . . . . . 6 +P = (𝑧P, 𝑦P ↦ {𝑓 ∣ ∃𝑔𝑧𝑦 𝑓 = (𝑔 +Q )})
4 addclnq 10202 . . . . . 6 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
53, 4genpelv 10257 . . . . 5 ((𝐴P𝐶P) → (𝑧 ∈ (𝐴 +P 𝐶) ↔ ∃𝑤𝐴𝑥𝐶 𝑧 = (𝑤 +Q 𝑥)))
62, 5sylan2 592 . . . 4 ((𝐴P ∧ (𝐵P𝐴𝐵)) → (𝑧 ∈ (𝐴 +P 𝐶) ↔ ∃𝑤𝐴𝑥𝐶 𝑧 = (𝑤 +Q 𝑥)))
71abeq2i 2915 . . . . . . . . . . . 12 (𝑥𝐶 ↔ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))
8 elprnq 10248 . . . . . . . . . . . . . . . . . . 19 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑦 +Q 𝑥) ∈ Q)
9 addnqf 10205 . . . . . . . . . . . . . . . . . . . . . 22 +Q :(Q × Q)⟶Q
109fdmi 6384 . . . . . . . . . . . . . . . . . . . . 21 dom +Q = (Q × Q)
11 0nnq 10181 . . . . . . . . . . . . . . . . . . . . 21 ¬ ∅ ∈ Q
1210, 11ndmovrcl 7181 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 +Q 𝑥) ∈ Q → (𝑦Q𝑥Q))
1312simpld 495 . . . . . . . . . . . . . . . . . . 19 ((𝑦 +Q 𝑥) ∈ Q𝑦Q)
148, 13syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → 𝑦Q)
15 prub 10251 . . . . . . . . . . . . . . . . . 18 (((𝐴P𝑤𝐴) ∧ 𝑦Q) → (¬ 𝑦𝐴𝑤 <Q 𝑦))
1614, 15sylan2 592 . . . . . . . . . . . . . . . . 17 (((𝐴P𝑤𝐴) ∧ (𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) → (¬ 𝑦𝐴𝑤 <Q 𝑦))
1712simprd 496 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 +Q 𝑥) ∈ Q𝑥Q)
18 vex 3435 . . . . . . . . . . . . . . . . . . . . 21 𝑤 ∈ V
19 vex 3435 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ V
20 ltanq 10228 . . . . . . . . . . . . . . . . . . . . 21 (𝑢Q → (𝑧 <Q 𝑣 ↔ (𝑢 +Q 𝑧) <Q (𝑢 +Q 𝑣)))
21 vex 3435 . . . . . . . . . . . . . . . . . . . . 21 𝑥 ∈ V
22 addcomnq 10208 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 +Q 𝑣) = (𝑣 +Q 𝑧)
2318, 19, 20, 21, 22caovord2 7207 . . . . . . . . . . . . . . . . . . . 20 (𝑥Q → (𝑤 <Q 𝑦 ↔ (𝑤 +Q 𝑥) <Q (𝑦 +Q 𝑥)))
248, 17, 233syl 18 . . . . . . . . . . . . . . . . . . 19 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑤 <Q 𝑦 ↔ (𝑤 +Q 𝑥) <Q (𝑦 +Q 𝑥)))
25 prcdnq 10250 . . . . . . . . . . . . . . . . . . 19 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ((𝑤 +Q 𝑥) <Q (𝑦 +Q 𝑥) → (𝑤 +Q 𝑥) ∈ 𝐵))
2624, 25sylbid 241 . . . . . . . . . . . . . . . . . 18 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑤 <Q 𝑦 → (𝑤 +Q 𝑥) ∈ 𝐵))
2726adantl 482 . . . . . . . . . . . . . . . . 17 (((𝐴P𝑤𝐴) ∧ (𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) → (𝑤 <Q 𝑦 → (𝑤 +Q 𝑥) ∈ 𝐵))
2816, 27syld 47 . . . . . . . . . . . . . . . 16 (((𝐴P𝑤𝐴) ∧ (𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) → (¬ 𝑦𝐴 → (𝑤 +Q 𝑥) ∈ 𝐵))
2928exp32 421 . . . . . . . . . . . . . . 15 ((𝐴P𝑤𝐴) → (𝐵P → ((𝑦 +Q 𝑥) ∈ 𝐵 → (¬ 𝑦𝐴 → (𝑤 +Q 𝑥) ∈ 𝐵))))
3029com34 91 . . . . . . . . . . . . . 14 ((𝐴P𝑤𝐴) → (𝐵P → (¬ 𝑦𝐴 → ((𝑦 +Q 𝑥) ∈ 𝐵 → (𝑤 +Q 𝑥) ∈ 𝐵))))
3130imp4b 422 . . . . . . . . . . . . 13 (((𝐴P𝑤𝐴) ∧ 𝐵P) → ((¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑤 +Q 𝑥) ∈ 𝐵))
3231exlimdv 1909 . . . . . . . . . . . 12 (((𝐴P𝑤𝐴) ∧ 𝐵P) → (∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑤 +Q 𝑥) ∈ 𝐵))
337, 32syl5bi 243 . . . . . . . . . . 11 (((𝐴P𝑤𝐴) ∧ 𝐵P) → (𝑥𝐶 → (𝑤 +Q 𝑥) ∈ 𝐵))
3433exp31 420 . . . . . . . . . 10 (𝐴P → (𝑤𝐴 → (𝐵P → (𝑥𝐶 → (𝑤 +Q 𝑥) ∈ 𝐵))))
3534com23 86 . . . . . . . . 9 (𝐴P → (𝐵P → (𝑤𝐴 → (𝑥𝐶 → (𝑤 +Q 𝑥) ∈ 𝐵))))
3635imp43 428 . . . . . . . 8 (((𝐴P𝐵P) ∧ (𝑤𝐴𝑥𝐶)) → (𝑤 +Q 𝑥) ∈ 𝐵)
37 eleq1 2868 . . . . . . . . 9 (𝑧 = (𝑤 +Q 𝑥) → (𝑧𝐵 ↔ (𝑤 +Q 𝑥) ∈ 𝐵))
3837biimparc 480 . . . . . . . 8 (((𝑤 +Q 𝑥) ∈ 𝐵𝑧 = (𝑤 +Q 𝑥)) → 𝑧𝐵)
3936, 38sylan 580 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝑤𝐴𝑥𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑥)) → 𝑧𝐵)
4039exp31 420 . . . . . 6 ((𝐴P𝐵P) → ((𝑤𝐴𝑥𝐶) → (𝑧 = (𝑤 +Q 𝑥) → 𝑧𝐵)))
4140rexlimdvv 3253 . . . . 5 ((𝐴P𝐵P) → (∃𝑤𝐴𝑥𝐶 𝑧 = (𝑤 +Q 𝑥) → 𝑧𝐵))
4241adantrr 713 . . . 4 ((𝐴P ∧ (𝐵P𝐴𝐵)) → (∃𝑤𝐴𝑥𝐶 𝑧 = (𝑤 +Q 𝑥) → 𝑧𝐵))
436, 42sylbid 241 . . 3 ((𝐴P ∧ (𝐵P𝐴𝐵)) → (𝑧 ∈ (𝐴 +P 𝐶) → 𝑧𝐵))
4443ssrdv 3890 . 2 ((𝐴P ∧ (𝐵P𝐴𝐵)) → (𝐴 +P 𝐶) ⊆ 𝐵)
4544anassrs 468 1 (((𝐴P𝐵P) ∧ 𝐴𝐵) → (𝐴 +P 𝐶) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1520  wex 1759  wcel 2079  {cab 2773  wrex 3104  wss 3854  wpss 3855   class class class wbr 4956   × cxp 5433  (class class class)co 7007  Qcnq 10109   +Q cplq 10112   <Q cltq 10115  Pcnp 10116   +P cpp 10118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-inf2 8939
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-int 4777  df-iun 4821  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-ov 7010  df-oprab 7011  df-mpo 7012  df-om 7428  df-1st 7536  df-2nd 7537  df-wrecs 7789  df-recs 7851  df-rdg 7889  df-1o 7944  df-oadd 7948  df-omul 7949  df-er 8130  df-ni 10129  df-pli 10130  df-mi 10131  df-lti 10132  df-plpq 10165  df-mpq 10166  df-ltpq 10167  df-enq 10168  df-nq 10169  df-erq 10170  df-plq 10171  df-mq 10172  df-1nq 10173  df-ltnq 10175  df-np 10238  df-plp 10240
This theorem is referenced by:  ltexpri  10300
  Copyright terms: Public domain W3C validator