MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexprlem6 Structured version   Visualization version   GIF version

Theorem ltexprlem6 10796
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
Assertion
Ref Expression
ltexprlem6 (((𝐴P𝐵P) ∧ 𝐴𝐵) → (𝐴 +P 𝐶) ⊆ 𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶
Allowed substitution hint:   𝐶(𝑦)

Proof of Theorem ltexprlem6
Dummy variables 𝑧 𝑤 𝑣 𝑓 𝑔 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexprlem.1 . . . . . 6 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
21ltexprlem5 10795 . . . . 5 ((𝐵P𝐴𝐵) → 𝐶P)
3 df-plp 10738 . . . . . 6 +P = (𝑧P, 𝑦P ↦ {𝑓 ∣ ∃𝑔𝑧𝑦 𝑓 = (𝑔 +Q )})
4 addclnq 10700 . . . . . 6 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
53, 4genpelv 10755 . . . . 5 ((𝐴P𝐶P) → (𝑧 ∈ (𝐴 +P 𝐶) ↔ ∃𝑤𝐴𝑥𝐶 𝑧 = (𝑤 +Q 𝑥)))
62, 5sylan2 593 . . . 4 ((𝐴P ∧ (𝐵P𝐴𝐵)) → (𝑧 ∈ (𝐴 +P 𝐶) ↔ ∃𝑤𝐴𝑥𝐶 𝑧 = (𝑤 +Q 𝑥)))
71abeq2i 2877 . . . . . . . . . . . 12 (𝑥𝐶 ↔ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))
8 elprnq 10746 . . . . . . . . . . . . . . . . . . 19 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑦 +Q 𝑥) ∈ Q)
9 addnqf 10703 . . . . . . . . . . . . . . . . . . . . . 22 +Q :(Q × Q)⟶Q
109fdmi 6609 . . . . . . . . . . . . . . . . . . . . 21 dom +Q = (Q × Q)
11 0nnq 10679 . . . . . . . . . . . . . . . . . . . . 21 ¬ ∅ ∈ Q
1210, 11ndmovrcl 7450 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 +Q 𝑥) ∈ Q → (𝑦Q𝑥Q))
1312simpld 495 . . . . . . . . . . . . . . . . . . 19 ((𝑦 +Q 𝑥) ∈ Q𝑦Q)
148, 13syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → 𝑦Q)
15 prub 10749 . . . . . . . . . . . . . . . . . 18 (((𝐴P𝑤𝐴) ∧ 𝑦Q) → (¬ 𝑦𝐴𝑤 <Q 𝑦))
1614, 15sylan2 593 . . . . . . . . . . . . . . . . 17 (((𝐴P𝑤𝐴) ∧ (𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) → (¬ 𝑦𝐴𝑤 <Q 𝑦))
1712simprd 496 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 +Q 𝑥) ∈ Q𝑥Q)
18 vex 3435 . . . . . . . . . . . . . . . . . . . . 21 𝑤 ∈ V
19 vex 3435 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ V
20 ltanq 10726 . . . . . . . . . . . . . . . . . . . . 21 (𝑢Q → (𝑧 <Q 𝑣 ↔ (𝑢 +Q 𝑧) <Q (𝑢 +Q 𝑣)))
21 vex 3435 . . . . . . . . . . . . . . . . . . . . 21 𝑥 ∈ V
22 addcomnq 10706 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 +Q 𝑣) = (𝑣 +Q 𝑧)
2318, 19, 20, 21, 22caovord2 7476 . . . . . . . . . . . . . . . . . . . 20 (𝑥Q → (𝑤 <Q 𝑦 ↔ (𝑤 +Q 𝑥) <Q (𝑦 +Q 𝑥)))
248, 17, 233syl 18 . . . . . . . . . . . . . . . . . . 19 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑤 <Q 𝑦 ↔ (𝑤 +Q 𝑥) <Q (𝑦 +Q 𝑥)))
25 prcdnq 10748 . . . . . . . . . . . . . . . . . . 19 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ((𝑤 +Q 𝑥) <Q (𝑦 +Q 𝑥) → (𝑤 +Q 𝑥) ∈ 𝐵))
2624, 25sylbid 239 . . . . . . . . . . . . . . . . . 18 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑤 <Q 𝑦 → (𝑤 +Q 𝑥) ∈ 𝐵))
2726adantl 482 . . . . . . . . . . . . . . . . 17 (((𝐴P𝑤𝐴) ∧ (𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) → (𝑤 <Q 𝑦 → (𝑤 +Q 𝑥) ∈ 𝐵))
2816, 27syld 47 . . . . . . . . . . . . . . . 16 (((𝐴P𝑤𝐴) ∧ (𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) → (¬ 𝑦𝐴 → (𝑤 +Q 𝑥) ∈ 𝐵))
2928exp32 421 . . . . . . . . . . . . . . 15 ((𝐴P𝑤𝐴) → (𝐵P → ((𝑦 +Q 𝑥) ∈ 𝐵 → (¬ 𝑦𝐴 → (𝑤 +Q 𝑥) ∈ 𝐵))))
3029com34 91 . . . . . . . . . . . . . 14 ((𝐴P𝑤𝐴) → (𝐵P → (¬ 𝑦𝐴 → ((𝑦 +Q 𝑥) ∈ 𝐵 → (𝑤 +Q 𝑥) ∈ 𝐵))))
3130imp4b 422 . . . . . . . . . . . . 13 (((𝐴P𝑤𝐴) ∧ 𝐵P) → ((¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑤 +Q 𝑥) ∈ 𝐵))
3231exlimdv 1940 . . . . . . . . . . . 12 (((𝐴P𝑤𝐴) ∧ 𝐵P) → (∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑤 +Q 𝑥) ∈ 𝐵))
337, 32syl5bi 241 . . . . . . . . . . 11 (((𝐴P𝑤𝐴) ∧ 𝐵P) → (𝑥𝐶 → (𝑤 +Q 𝑥) ∈ 𝐵))
3433exp31 420 . . . . . . . . . 10 (𝐴P → (𝑤𝐴 → (𝐵P → (𝑥𝐶 → (𝑤 +Q 𝑥) ∈ 𝐵))))
3534com23 86 . . . . . . . . 9 (𝐴P → (𝐵P → (𝑤𝐴 → (𝑥𝐶 → (𝑤 +Q 𝑥) ∈ 𝐵))))
3635imp43 428 . . . . . . . 8 (((𝐴P𝐵P) ∧ (𝑤𝐴𝑥𝐶)) → (𝑤 +Q 𝑥) ∈ 𝐵)
37 eleq1 2828 . . . . . . . . 9 (𝑧 = (𝑤 +Q 𝑥) → (𝑧𝐵 ↔ (𝑤 +Q 𝑥) ∈ 𝐵))
3837biimparc 480 . . . . . . . 8 (((𝑤 +Q 𝑥) ∈ 𝐵𝑧 = (𝑤 +Q 𝑥)) → 𝑧𝐵)
3936, 38sylan 580 . . . . . . 7 ((((𝐴P𝐵P) ∧ (𝑤𝐴𝑥𝐶)) ∧ 𝑧 = (𝑤 +Q 𝑥)) → 𝑧𝐵)
4039exp31 420 . . . . . 6 ((𝐴P𝐵P) → ((𝑤𝐴𝑥𝐶) → (𝑧 = (𝑤 +Q 𝑥) → 𝑧𝐵)))
4140rexlimdvv 3224 . . . . 5 ((𝐴P𝐵P) → (∃𝑤𝐴𝑥𝐶 𝑧 = (𝑤 +Q 𝑥) → 𝑧𝐵))
4241adantrr 714 . . . 4 ((𝐴P ∧ (𝐵P𝐴𝐵)) → (∃𝑤𝐴𝑥𝐶 𝑧 = (𝑤 +Q 𝑥) → 𝑧𝐵))
436, 42sylbid 239 . . 3 ((𝐴P ∧ (𝐵P𝐴𝐵)) → (𝑧 ∈ (𝐴 +P 𝐶) → 𝑧𝐵))
4443ssrdv 3932 . 2 ((𝐴P ∧ (𝐵P𝐴𝐵)) → (𝐴 +P 𝐶) ⊆ 𝐵)
4544anassrs 468 1 (((𝐴P𝐵P) ∧ 𝐴𝐵) → (𝐴 +P 𝐶) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1542  wex 1786  wcel 2110  {cab 2717  wrex 3067  wss 3892  wpss 3893   class class class wbr 5079   × cxp 5587  (class class class)co 7269  Qcnq 10607   +Q cplq 10610   <Q cltq 10613  Pcnp 10614   +P cpp 10616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-inf2 9375
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7705  df-1st 7822  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-1o 8286  df-oadd 8290  df-omul 8291  df-er 8479  df-ni 10627  df-pli 10628  df-mi 10629  df-lti 10630  df-plpq 10663  df-mpq 10664  df-ltpq 10665  df-enq 10666  df-nq 10667  df-erq 10668  df-plq 10669  df-mq 10670  df-1nq 10671  df-ltnq 10673  df-np 10736  df-plp 10738
This theorem is referenced by:  ltexpri  10798
  Copyright terms: Public domain W3C validator