MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addclprlem1 Structured version   Visualization version   GIF version

Theorem addclprlem1 10772
Description: Lemma to prove downward closure in positive real addition. Part of proof of Proposition 9-3.5 of [Gleason] p. 123. (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
addclprlem1 (((𝐴P𝑔𝐴) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴))

Proof of Theorem addclprlem1
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elprnq 10747 . . 3 ((𝐴P𝑔𝐴) → 𝑔Q)
2 ltrnq 10735 . . . . 5 (𝑥 <Q (𝑔 +Q ) ↔ (*Q‘(𝑔 +Q )) <Q (*Q𝑥))
3 ltmnq 10728 . . . . . 6 (𝑥Q → ((*Q‘(𝑔 +Q )) <Q (*Q𝑥) ↔ (𝑥 ·Q (*Q‘(𝑔 +Q ))) <Q (𝑥 ·Q (*Q𝑥))))
4 ovex 7308 . . . . . . 7 (𝑥 ·Q (*Q‘(𝑔 +Q ))) ∈ V
5 ovex 7308 . . . . . . 7 (𝑥 ·Q (*Q𝑥)) ∈ V
6 ltmnq 10728 . . . . . . 7 (𝑤Q → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
7 vex 3436 . . . . . . 7 𝑔 ∈ V
8 mulcomnq 10709 . . . . . . 7 (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦)
94, 5, 6, 7, 8caovord2 7484 . . . . . 6 (𝑔Q → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) <Q (𝑥 ·Q (*Q𝑥)) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) <Q ((𝑥 ·Q (*Q𝑥)) ·Q 𝑔)))
103, 9sylan9bbr 511 . . . . 5 ((𝑔Q𝑥Q) → ((*Q‘(𝑔 +Q )) <Q (*Q𝑥) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) <Q ((𝑥 ·Q (*Q𝑥)) ·Q 𝑔)))
112, 10bitrid 282 . . . 4 ((𝑔Q𝑥Q) → (𝑥 <Q (𝑔 +Q ) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) <Q ((𝑥 ·Q (*Q𝑥)) ·Q 𝑔)))
12 recidnq 10721 . . . . . . 7 (𝑥Q → (𝑥 ·Q (*Q𝑥)) = 1Q)
1312oveq1d 7290 . . . . . 6 (𝑥Q → ((𝑥 ·Q (*Q𝑥)) ·Q 𝑔) = (1Q ·Q 𝑔))
14 mulcomnq 10709 . . . . . . 7 (1Q ·Q 𝑔) = (𝑔 ·Q 1Q)
15 mulidnq 10719 . . . . . . 7 (𝑔Q → (𝑔 ·Q 1Q) = 𝑔)
1614, 15eqtrid 2790 . . . . . 6 (𝑔Q → (1Q ·Q 𝑔) = 𝑔)
1713, 16sylan9eqr 2800 . . . . 5 ((𝑔Q𝑥Q) → ((𝑥 ·Q (*Q𝑥)) ·Q 𝑔) = 𝑔)
1817breq2d 5086 . . . 4 ((𝑔Q𝑥Q) → (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) <Q ((𝑥 ·Q (*Q𝑥)) ·Q 𝑔) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) <Q 𝑔))
1911, 18bitrd 278 . . 3 ((𝑔Q𝑥Q) → (𝑥 <Q (𝑔 +Q ) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) <Q 𝑔))
201, 19sylan 580 . 2 (((𝐴P𝑔𝐴) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) <Q 𝑔))
21 prcdnq 10749 . . 3 ((𝐴P𝑔𝐴) → (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) <Q 𝑔 → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴))
2221adantr 481 . 2 (((𝐴P𝑔𝐴) ∧ 𝑥Q) → (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) <Q 𝑔 → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴))
2320, 22sylbid 239 1 (((𝐴P𝑔𝐴) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275  Qcnq 10608  1Qc1q 10609   +Q cplq 10611   ·Q cmq 10612  *Qcrq 10613   <Q cltq 10614  Pcnp 10615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-omul 8302  df-er 8498  df-ni 10628  df-mi 10630  df-lti 10631  df-mpq 10665  df-ltpq 10666  df-enq 10667  df-nq 10668  df-erq 10669  df-mq 10671  df-1nq 10672  df-rq 10673  df-ltnq 10674  df-np 10737
This theorem is referenced by:  addclprlem2  10773
  Copyright terms: Public domain W3C validator