Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addclprlem1 | Structured version Visualization version GIF version |
Description: Lemma to prove downward closure in positive real addition. Part of proof of Proposition 9-3.5 of [Gleason] p. 123. (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addclprlem1 | ⊢ (((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔 +Q ℎ) → ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elprnq 10605 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) → 𝑔 ∈ Q) | |
2 | ltrnq 10593 | . . . . 5 ⊢ (𝑥 <Q (𝑔 +Q ℎ) ↔ (*Q‘(𝑔 +Q ℎ)) <Q (*Q‘𝑥)) | |
3 | ltmnq 10586 | . . . . . 6 ⊢ (𝑥 ∈ Q → ((*Q‘(𝑔 +Q ℎ)) <Q (*Q‘𝑥) ↔ (𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) <Q (𝑥 ·Q (*Q‘𝑥)))) | |
4 | ovex 7246 | . . . . . . 7 ⊢ (𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ∈ V | |
5 | ovex 7246 | . . . . . . 7 ⊢ (𝑥 ·Q (*Q‘𝑥)) ∈ V | |
6 | ltmnq 10586 | . . . . . . 7 ⊢ (𝑤 ∈ Q → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧))) | |
7 | vex 3412 | . . . . . . 7 ⊢ 𝑔 ∈ V | |
8 | mulcomnq 10567 | . . . . . . 7 ⊢ (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦) | |
9 | 4, 5, 6, 7, 8 | caovord2 7420 | . . . . . 6 ⊢ (𝑔 ∈ Q → ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) <Q (𝑥 ·Q (*Q‘𝑥)) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) <Q ((𝑥 ·Q (*Q‘𝑥)) ·Q 𝑔))) |
10 | 3, 9 | sylan9bbr 514 | . . . . 5 ⊢ ((𝑔 ∈ Q ∧ 𝑥 ∈ Q) → ((*Q‘(𝑔 +Q ℎ)) <Q (*Q‘𝑥) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) <Q ((𝑥 ·Q (*Q‘𝑥)) ·Q 𝑔))) |
11 | 2, 10 | syl5bb 286 | . . . 4 ⊢ ((𝑔 ∈ Q ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔 +Q ℎ) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) <Q ((𝑥 ·Q (*Q‘𝑥)) ·Q 𝑔))) |
12 | recidnq 10579 | . . . . . . 7 ⊢ (𝑥 ∈ Q → (𝑥 ·Q (*Q‘𝑥)) = 1Q) | |
13 | 12 | oveq1d 7228 | . . . . . 6 ⊢ (𝑥 ∈ Q → ((𝑥 ·Q (*Q‘𝑥)) ·Q 𝑔) = (1Q ·Q 𝑔)) |
14 | mulcomnq 10567 | . . . . . . 7 ⊢ (1Q ·Q 𝑔) = (𝑔 ·Q 1Q) | |
15 | mulidnq 10577 | . . . . . . 7 ⊢ (𝑔 ∈ Q → (𝑔 ·Q 1Q) = 𝑔) | |
16 | 14, 15 | eqtrid 2789 | . . . . . 6 ⊢ (𝑔 ∈ Q → (1Q ·Q 𝑔) = 𝑔) |
17 | 13, 16 | sylan9eqr 2800 | . . . . 5 ⊢ ((𝑔 ∈ Q ∧ 𝑥 ∈ Q) → ((𝑥 ·Q (*Q‘𝑥)) ·Q 𝑔) = 𝑔) |
18 | 17 | breq2d 5065 | . . . 4 ⊢ ((𝑔 ∈ Q ∧ 𝑥 ∈ Q) → (((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) <Q ((𝑥 ·Q (*Q‘𝑥)) ·Q 𝑔) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) <Q 𝑔)) |
19 | 11, 18 | bitrd 282 | . . 3 ⊢ ((𝑔 ∈ Q ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔 +Q ℎ) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) <Q 𝑔)) |
20 | 1, 19 | sylan 583 | . 2 ⊢ (((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔 +Q ℎ) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) <Q 𝑔)) |
21 | prcdnq 10607 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) → (((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) <Q 𝑔 → ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) ∈ 𝐴)) | |
22 | 21 | adantr 484 | . 2 ⊢ (((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ 𝑥 ∈ Q) → (((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) <Q 𝑔 → ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) ∈ 𝐴)) |
23 | 20, 22 | sylbid 243 | 1 ⊢ (((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔 +Q ℎ) → ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2110 class class class wbr 5053 ‘cfv 6380 (class class class)co 7213 Qcnq 10466 1Qc1q 10467 +Q cplq 10469 ·Q cmq 10470 *Qcrq 10471 <Q cltq 10472 Pcnp 10473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-oadd 8206 df-omul 8207 df-er 8391 df-ni 10486 df-mi 10488 df-lti 10489 df-mpq 10523 df-ltpq 10524 df-enq 10525 df-nq 10526 df-erq 10527 df-mq 10529 df-1nq 10530 df-rq 10531 df-ltnq 10532 df-np 10595 |
This theorem is referenced by: addclprlem2 10631 |
Copyright terms: Public domain | W3C validator |