MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addclprlem1 Structured version   Visualization version   GIF version

Theorem addclprlem1 10904
Description: Lemma to prove downward closure in positive real addition. Part of proof of Proposition 9-3.5 of [Gleason] p. 123. (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
addclprlem1 (((𝐴P𝑔𝐴) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴))

Proof of Theorem addclprlem1
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elprnq 10879 . . 3 ((𝐴P𝑔𝐴) → 𝑔Q)
2 ltrnq 10867 . . . . 5 (𝑥 <Q (𝑔 +Q ) ↔ (*Q‘(𝑔 +Q )) <Q (*Q𝑥))
3 ltmnq 10860 . . . . . 6 (𝑥Q → ((*Q‘(𝑔 +Q )) <Q (*Q𝑥) ↔ (𝑥 ·Q (*Q‘(𝑔 +Q ))) <Q (𝑥 ·Q (*Q𝑥))))
4 ovex 7379 . . . . . . 7 (𝑥 ·Q (*Q‘(𝑔 +Q ))) ∈ V
5 ovex 7379 . . . . . . 7 (𝑥 ·Q (*Q𝑥)) ∈ V
6 ltmnq 10860 . . . . . . 7 (𝑤Q → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
7 vex 3440 . . . . . . 7 𝑔 ∈ V
8 mulcomnq 10841 . . . . . . 7 (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦)
94, 5, 6, 7, 8caovord2 7558 . . . . . 6 (𝑔Q → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) <Q (𝑥 ·Q (*Q𝑥)) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) <Q ((𝑥 ·Q (*Q𝑥)) ·Q 𝑔)))
103, 9sylan9bbr 510 . . . . 5 ((𝑔Q𝑥Q) → ((*Q‘(𝑔 +Q )) <Q (*Q𝑥) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) <Q ((𝑥 ·Q (*Q𝑥)) ·Q 𝑔)))
112, 10bitrid 283 . . . 4 ((𝑔Q𝑥Q) → (𝑥 <Q (𝑔 +Q ) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) <Q ((𝑥 ·Q (*Q𝑥)) ·Q 𝑔)))
12 recidnq 10853 . . . . . . 7 (𝑥Q → (𝑥 ·Q (*Q𝑥)) = 1Q)
1312oveq1d 7361 . . . . . 6 (𝑥Q → ((𝑥 ·Q (*Q𝑥)) ·Q 𝑔) = (1Q ·Q 𝑔))
14 mulcomnq 10841 . . . . . . 7 (1Q ·Q 𝑔) = (𝑔 ·Q 1Q)
15 mulidnq 10851 . . . . . . 7 (𝑔Q → (𝑔 ·Q 1Q) = 𝑔)
1614, 15eqtrid 2778 . . . . . 6 (𝑔Q → (1Q ·Q 𝑔) = 𝑔)
1713, 16sylan9eqr 2788 . . . . 5 ((𝑔Q𝑥Q) → ((𝑥 ·Q (*Q𝑥)) ·Q 𝑔) = 𝑔)
1817breq2d 5103 . . . 4 ((𝑔Q𝑥Q) → (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) <Q ((𝑥 ·Q (*Q𝑥)) ·Q 𝑔) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) <Q 𝑔))
1911, 18bitrd 279 . . 3 ((𝑔Q𝑥Q) → (𝑥 <Q (𝑔 +Q ) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) <Q 𝑔))
201, 19sylan 580 . 2 (((𝐴P𝑔𝐴) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) <Q 𝑔))
21 prcdnq 10881 . . 3 ((𝐴P𝑔𝐴) → (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) <Q 𝑔 → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴))
2221adantr 480 . 2 (((𝐴P𝑔𝐴) ∧ 𝑥Q) → (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) <Q 𝑔 → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴))
2320, 22sylbid 240 1 (((𝐴P𝑔𝐴) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111   class class class wbr 5091  cfv 6481  (class class class)co 7346  Qcnq 10740  1Qc1q 10741   +Q cplq 10743   ·Q cmq 10744  *Qcrq 10745   <Q cltq 10746  Pcnp 10747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-omul 8390  df-er 8622  df-ni 10760  df-mi 10762  df-lti 10763  df-mpq 10797  df-ltpq 10798  df-enq 10799  df-nq 10800  df-erq 10801  df-mq 10803  df-1nq 10804  df-rq 10805  df-ltnq 10806  df-np 10869
This theorem is referenced by:  addclprlem2  10905
  Copyright terms: Public domain W3C validator