| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addclprlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma to prove downward closure in positive real addition. Part of proof of Proposition 9-3.5 of [Gleason] p. 123. (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| addclprlem1 | ⊢ (((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔 +Q ℎ) → ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elprnq 10879 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) → 𝑔 ∈ Q) | |
| 2 | ltrnq 10867 | . . . . 5 ⊢ (𝑥 <Q (𝑔 +Q ℎ) ↔ (*Q‘(𝑔 +Q ℎ)) <Q (*Q‘𝑥)) | |
| 3 | ltmnq 10860 | . . . . . 6 ⊢ (𝑥 ∈ Q → ((*Q‘(𝑔 +Q ℎ)) <Q (*Q‘𝑥) ↔ (𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) <Q (𝑥 ·Q (*Q‘𝑥)))) | |
| 4 | ovex 7379 | . . . . . . 7 ⊢ (𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ∈ V | |
| 5 | ovex 7379 | . . . . . . 7 ⊢ (𝑥 ·Q (*Q‘𝑥)) ∈ V | |
| 6 | ltmnq 10860 | . . . . . . 7 ⊢ (𝑤 ∈ Q → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧))) | |
| 7 | vex 3440 | . . . . . . 7 ⊢ 𝑔 ∈ V | |
| 8 | mulcomnq 10841 | . . . . . . 7 ⊢ (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦) | |
| 9 | 4, 5, 6, 7, 8 | caovord2 7558 | . . . . . 6 ⊢ (𝑔 ∈ Q → ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) <Q (𝑥 ·Q (*Q‘𝑥)) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) <Q ((𝑥 ·Q (*Q‘𝑥)) ·Q 𝑔))) |
| 10 | 3, 9 | sylan9bbr 510 | . . . . 5 ⊢ ((𝑔 ∈ Q ∧ 𝑥 ∈ Q) → ((*Q‘(𝑔 +Q ℎ)) <Q (*Q‘𝑥) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) <Q ((𝑥 ·Q (*Q‘𝑥)) ·Q 𝑔))) |
| 11 | 2, 10 | bitrid 283 | . . . 4 ⊢ ((𝑔 ∈ Q ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔 +Q ℎ) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) <Q ((𝑥 ·Q (*Q‘𝑥)) ·Q 𝑔))) |
| 12 | recidnq 10853 | . . . . . . 7 ⊢ (𝑥 ∈ Q → (𝑥 ·Q (*Q‘𝑥)) = 1Q) | |
| 13 | 12 | oveq1d 7361 | . . . . . 6 ⊢ (𝑥 ∈ Q → ((𝑥 ·Q (*Q‘𝑥)) ·Q 𝑔) = (1Q ·Q 𝑔)) |
| 14 | mulcomnq 10841 | . . . . . . 7 ⊢ (1Q ·Q 𝑔) = (𝑔 ·Q 1Q) | |
| 15 | mulidnq 10851 | . . . . . . 7 ⊢ (𝑔 ∈ Q → (𝑔 ·Q 1Q) = 𝑔) | |
| 16 | 14, 15 | eqtrid 2778 | . . . . . 6 ⊢ (𝑔 ∈ Q → (1Q ·Q 𝑔) = 𝑔) |
| 17 | 13, 16 | sylan9eqr 2788 | . . . . 5 ⊢ ((𝑔 ∈ Q ∧ 𝑥 ∈ Q) → ((𝑥 ·Q (*Q‘𝑥)) ·Q 𝑔) = 𝑔) |
| 18 | 17 | breq2d 5103 | . . . 4 ⊢ ((𝑔 ∈ Q ∧ 𝑥 ∈ Q) → (((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) <Q ((𝑥 ·Q (*Q‘𝑥)) ·Q 𝑔) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) <Q 𝑔)) |
| 19 | 11, 18 | bitrd 279 | . . 3 ⊢ ((𝑔 ∈ Q ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔 +Q ℎ) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) <Q 𝑔)) |
| 20 | 1, 19 | sylan 580 | . 2 ⊢ (((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔 +Q ℎ) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) <Q 𝑔)) |
| 21 | prcdnq 10881 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) → (((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) <Q 𝑔 → ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) ∈ 𝐴)) | |
| 22 | 21 | adantr 480 | . 2 ⊢ (((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ 𝑥 ∈ Q) → (((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) <Q 𝑔 → ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) ∈ 𝐴)) |
| 23 | 20, 22 | sylbid 240 | 1 ⊢ (((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔 +Q ℎ) → ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 Qcnq 10740 1Qc1q 10741 +Q cplq 10743 ·Q cmq 10744 *Qcrq 10745 <Q cltq 10746 Pcnp 10747 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-omul 8390 df-er 8622 df-ni 10760 df-mi 10762 df-lti 10763 df-mpq 10797 df-ltpq 10798 df-enq 10799 df-nq 10800 df-erq 10801 df-mq 10803 df-1nq 10804 df-rq 10805 df-ltnq 10806 df-np 10869 |
| This theorem is referenced by: addclprlem2 10905 |
| Copyright terms: Public domain | W3C validator |