| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addclprlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma to prove downward closure in positive real addition. Part of proof of Proposition 9-3.5 of [Gleason] p. 123. (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| addclprlem1 | ⊢ (((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔 +Q ℎ) → ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elprnq 10904 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) → 𝑔 ∈ Q) | |
| 2 | ltrnq 10892 | . . . . 5 ⊢ (𝑥 <Q (𝑔 +Q ℎ) ↔ (*Q‘(𝑔 +Q ℎ)) <Q (*Q‘𝑥)) | |
| 3 | ltmnq 10885 | . . . . . 6 ⊢ (𝑥 ∈ Q → ((*Q‘(𝑔 +Q ℎ)) <Q (*Q‘𝑥) ↔ (𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) <Q (𝑥 ·Q (*Q‘𝑥)))) | |
| 4 | ovex 7386 | . . . . . . 7 ⊢ (𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ∈ V | |
| 5 | ovex 7386 | . . . . . . 7 ⊢ (𝑥 ·Q (*Q‘𝑥)) ∈ V | |
| 6 | ltmnq 10885 | . . . . . . 7 ⊢ (𝑤 ∈ Q → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧))) | |
| 7 | vex 3442 | . . . . . . 7 ⊢ 𝑔 ∈ V | |
| 8 | mulcomnq 10866 | . . . . . . 7 ⊢ (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦) | |
| 9 | 4, 5, 6, 7, 8 | caovord2 7565 | . . . . . 6 ⊢ (𝑔 ∈ Q → ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) <Q (𝑥 ·Q (*Q‘𝑥)) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) <Q ((𝑥 ·Q (*Q‘𝑥)) ·Q 𝑔))) |
| 10 | 3, 9 | sylan9bbr 510 | . . . . 5 ⊢ ((𝑔 ∈ Q ∧ 𝑥 ∈ Q) → ((*Q‘(𝑔 +Q ℎ)) <Q (*Q‘𝑥) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) <Q ((𝑥 ·Q (*Q‘𝑥)) ·Q 𝑔))) |
| 11 | 2, 10 | bitrid 283 | . . . 4 ⊢ ((𝑔 ∈ Q ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔 +Q ℎ) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) <Q ((𝑥 ·Q (*Q‘𝑥)) ·Q 𝑔))) |
| 12 | recidnq 10878 | . . . . . . 7 ⊢ (𝑥 ∈ Q → (𝑥 ·Q (*Q‘𝑥)) = 1Q) | |
| 13 | 12 | oveq1d 7368 | . . . . . 6 ⊢ (𝑥 ∈ Q → ((𝑥 ·Q (*Q‘𝑥)) ·Q 𝑔) = (1Q ·Q 𝑔)) |
| 14 | mulcomnq 10866 | . . . . . . 7 ⊢ (1Q ·Q 𝑔) = (𝑔 ·Q 1Q) | |
| 15 | mulidnq 10876 | . . . . . . 7 ⊢ (𝑔 ∈ Q → (𝑔 ·Q 1Q) = 𝑔) | |
| 16 | 14, 15 | eqtrid 2776 | . . . . . 6 ⊢ (𝑔 ∈ Q → (1Q ·Q 𝑔) = 𝑔) |
| 17 | 13, 16 | sylan9eqr 2786 | . . . . 5 ⊢ ((𝑔 ∈ Q ∧ 𝑥 ∈ Q) → ((𝑥 ·Q (*Q‘𝑥)) ·Q 𝑔) = 𝑔) |
| 18 | 17 | breq2d 5107 | . . . 4 ⊢ ((𝑔 ∈ Q ∧ 𝑥 ∈ Q) → (((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) <Q ((𝑥 ·Q (*Q‘𝑥)) ·Q 𝑔) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) <Q 𝑔)) |
| 19 | 11, 18 | bitrd 279 | . . 3 ⊢ ((𝑔 ∈ Q ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔 +Q ℎ) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) <Q 𝑔)) |
| 20 | 1, 19 | sylan 580 | . 2 ⊢ (((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔 +Q ℎ) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) <Q 𝑔)) |
| 21 | prcdnq 10906 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) → (((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) <Q 𝑔 → ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) ∈ 𝐴)) | |
| 22 | 21 | adantr 480 | . 2 ⊢ (((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ 𝑥 ∈ Q) → (((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) <Q 𝑔 → ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) ∈ 𝐴)) |
| 23 | 20, 22 | sylbid 240 | 1 ⊢ (((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔 +Q ℎ) → ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 Qcnq 10765 1Qc1q 10766 +Q cplq 10768 ·Q cmq 10769 *Qcrq 10770 <Q cltq 10771 Pcnp 10772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-oadd 8399 df-omul 8400 df-er 8632 df-ni 10785 df-mi 10787 df-lti 10788 df-mpq 10822 df-ltpq 10823 df-enq 10824 df-nq 10825 df-erq 10826 df-mq 10828 df-1nq 10829 df-rq 10830 df-ltnq 10831 df-np 10894 |
| This theorem is referenced by: addclprlem2 10930 |
| Copyright terms: Public domain | W3C validator |