MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addclprlem1 Structured version   Visualization version   GIF version

Theorem addclprlem1 11054
Description: Lemma to prove downward closure in positive real addition. Part of proof of Proposition 9-3.5 of [Gleason] p. 123. (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
addclprlem1 (((𝐴P𝑔𝐴) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴))

Proof of Theorem addclprlem1
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elprnq 11029 . . 3 ((𝐴P𝑔𝐴) → 𝑔Q)
2 ltrnq 11017 . . . . 5 (𝑥 <Q (𝑔 +Q ) ↔ (*Q‘(𝑔 +Q )) <Q (*Q𝑥))
3 ltmnq 11010 . . . . . 6 (𝑥Q → ((*Q‘(𝑔 +Q )) <Q (*Q𝑥) ↔ (𝑥 ·Q (*Q‘(𝑔 +Q ))) <Q (𝑥 ·Q (*Q𝑥))))
4 ovex 7464 . . . . . . 7 (𝑥 ·Q (*Q‘(𝑔 +Q ))) ∈ V
5 ovex 7464 . . . . . . 7 (𝑥 ·Q (*Q𝑥)) ∈ V
6 ltmnq 11010 . . . . . . 7 (𝑤Q → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
7 vex 3482 . . . . . . 7 𝑔 ∈ V
8 mulcomnq 10991 . . . . . . 7 (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦)
94, 5, 6, 7, 8caovord2 7645 . . . . . 6 (𝑔Q → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) <Q (𝑥 ·Q (*Q𝑥)) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) <Q ((𝑥 ·Q (*Q𝑥)) ·Q 𝑔)))
103, 9sylan9bbr 510 . . . . 5 ((𝑔Q𝑥Q) → ((*Q‘(𝑔 +Q )) <Q (*Q𝑥) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) <Q ((𝑥 ·Q (*Q𝑥)) ·Q 𝑔)))
112, 10bitrid 283 . . . 4 ((𝑔Q𝑥Q) → (𝑥 <Q (𝑔 +Q ) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) <Q ((𝑥 ·Q (*Q𝑥)) ·Q 𝑔)))
12 recidnq 11003 . . . . . . 7 (𝑥Q → (𝑥 ·Q (*Q𝑥)) = 1Q)
1312oveq1d 7446 . . . . . 6 (𝑥Q → ((𝑥 ·Q (*Q𝑥)) ·Q 𝑔) = (1Q ·Q 𝑔))
14 mulcomnq 10991 . . . . . . 7 (1Q ·Q 𝑔) = (𝑔 ·Q 1Q)
15 mulidnq 11001 . . . . . . 7 (𝑔Q → (𝑔 ·Q 1Q) = 𝑔)
1614, 15eqtrid 2787 . . . . . 6 (𝑔Q → (1Q ·Q 𝑔) = 𝑔)
1713, 16sylan9eqr 2797 . . . . 5 ((𝑔Q𝑥Q) → ((𝑥 ·Q (*Q𝑥)) ·Q 𝑔) = 𝑔)
1817breq2d 5160 . . . 4 ((𝑔Q𝑥Q) → (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) <Q ((𝑥 ·Q (*Q𝑥)) ·Q 𝑔) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) <Q 𝑔))
1911, 18bitrd 279 . . 3 ((𝑔Q𝑥Q) → (𝑥 <Q (𝑔 +Q ) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) <Q 𝑔))
201, 19sylan 580 . 2 (((𝐴P𝑔𝐴) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) <Q 𝑔))
21 prcdnq 11031 . . 3 ((𝐴P𝑔𝐴) → (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) <Q 𝑔 → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴))
2221adantr 480 . 2 (((𝐴P𝑔𝐴) ∧ 𝑥Q) → (((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) <Q 𝑔 → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴))
2320, 22sylbid 240 1 (((𝐴P𝑔𝐴) ∧ 𝑥Q) → (𝑥 <Q (𝑔 +Q ) → ((𝑥 ·Q (*Q‘(𝑔 +Q ))) ·Q 𝑔) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2106   class class class wbr 5148  cfv 6563  (class class class)co 7431  Qcnq 10890  1Qc1q 10891   +Q cplq 10893   ·Q cmq 10894  *Qcrq 10895   <Q cltq 10896  Pcnp 10897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-omul 8510  df-er 8744  df-ni 10910  df-mi 10912  df-lti 10913  df-mpq 10947  df-ltpq 10948  df-enq 10949  df-nq 10950  df-erq 10951  df-mq 10953  df-1nq 10954  df-rq 10955  df-ltnq 10956  df-np 11019
This theorem is referenced by:  addclprlem2  11055
  Copyright terms: Public domain W3C validator