| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addclprlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma to prove downward closure in positive real addition. Part of proof of Proposition 9-3.5 of [Gleason] p. 123. (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| addclprlem1 | ⊢ (((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔 +Q ℎ) → ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elprnq 10951 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) → 𝑔 ∈ Q) | |
| 2 | ltrnq 10939 | . . . . 5 ⊢ (𝑥 <Q (𝑔 +Q ℎ) ↔ (*Q‘(𝑔 +Q ℎ)) <Q (*Q‘𝑥)) | |
| 3 | ltmnq 10932 | . . . . . 6 ⊢ (𝑥 ∈ Q → ((*Q‘(𝑔 +Q ℎ)) <Q (*Q‘𝑥) ↔ (𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) <Q (𝑥 ·Q (*Q‘𝑥)))) | |
| 4 | ovex 7423 | . . . . . . 7 ⊢ (𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ∈ V | |
| 5 | ovex 7423 | . . . . . . 7 ⊢ (𝑥 ·Q (*Q‘𝑥)) ∈ V | |
| 6 | ltmnq 10932 | . . . . . . 7 ⊢ (𝑤 ∈ Q → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧))) | |
| 7 | vex 3454 | . . . . . . 7 ⊢ 𝑔 ∈ V | |
| 8 | mulcomnq 10913 | . . . . . . 7 ⊢ (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦) | |
| 9 | 4, 5, 6, 7, 8 | caovord2 7604 | . . . . . 6 ⊢ (𝑔 ∈ Q → ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) <Q (𝑥 ·Q (*Q‘𝑥)) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) <Q ((𝑥 ·Q (*Q‘𝑥)) ·Q 𝑔))) |
| 10 | 3, 9 | sylan9bbr 510 | . . . . 5 ⊢ ((𝑔 ∈ Q ∧ 𝑥 ∈ Q) → ((*Q‘(𝑔 +Q ℎ)) <Q (*Q‘𝑥) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) <Q ((𝑥 ·Q (*Q‘𝑥)) ·Q 𝑔))) |
| 11 | 2, 10 | bitrid 283 | . . . 4 ⊢ ((𝑔 ∈ Q ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔 +Q ℎ) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) <Q ((𝑥 ·Q (*Q‘𝑥)) ·Q 𝑔))) |
| 12 | recidnq 10925 | . . . . . . 7 ⊢ (𝑥 ∈ Q → (𝑥 ·Q (*Q‘𝑥)) = 1Q) | |
| 13 | 12 | oveq1d 7405 | . . . . . 6 ⊢ (𝑥 ∈ Q → ((𝑥 ·Q (*Q‘𝑥)) ·Q 𝑔) = (1Q ·Q 𝑔)) |
| 14 | mulcomnq 10913 | . . . . . . 7 ⊢ (1Q ·Q 𝑔) = (𝑔 ·Q 1Q) | |
| 15 | mulidnq 10923 | . . . . . . 7 ⊢ (𝑔 ∈ Q → (𝑔 ·Q 1Q) = 𝑔) | |
| 16 | 14, 15 | eqtrid 2777 | . . . . . 6 ⊢ (𝑔 ∈ Q → (1Q ·Q 𝑔) = 𝑔) |
| 17 | 13, 16 | sylan9eqr 2787 | . . . . 5 ⊢ ((𝑔 ∈ Q ∧ 𝑥 ∈ Q) → ((𝑥 ·Q (*Q‘𝑥)) ·Q 𝑔) = 𝑔) |
| 18 | 17 | breq2d 5122 | . . . 4 ⊢ ((𝑔 ∈ Q ∧ 𝑥 ∈ Q) → (((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) <Q ((𝑥 ·Q (*Q‘𝑥)) ·Q 𝑔) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) <Q 𝑔)) |
| 19 | 11, 18 | bitrd 279 | . . 3 ⊢ ((𝑔 ∈ Q ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔 +Q ℎ) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) <Q 𝑔)) |
| 20 | 1, 19 | sylan 580 | . 2 ⊢ (((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔 +Q ℎ) ↔ ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) <Q 𝑔)) |
| 21 | prcdnq 10953 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) → (((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) <Q 𝑔 → ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) ∈ 𝐴)) | |
| 22 | 21 | adantr 480 | . 2 ⊢ (((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ 𝑥 ∈ Q) → (((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) <Q 𝑔 → ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) ∈ 𝐴)) |
| 23 | 20, 22 | sylbid 240 | 1 ⊢ (((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔 +Q ℎ) → ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 Qcnq 10812 1Qc1q 10813 +Q cplq 10815 ·Q cmq 10816 *Qcrq 10817 <Q cltq 10818 Pcnp 10819 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-omul 8442 df-er 8674 df-ni 10832 df-mi 10834 df-lti 10835 df-mpq 10869 df-ltpq 10870 df-enq 10871 df-nq 10872 df-erq 10873 df-mq 10875 df-1nq 10876 df-rq 10877 df-ltnq 10878 df-np 10941 |
| This theorem is referenced by: addclprlem2 10977 |
| Copyright terms: Public domain | W3C validator |