MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reclem3pr Structured version   Visualization version   GIF version

Theorem reclem3pr 10269
Description: Lemma for Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 30-Apr-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
reclempr.1 𝐵 = {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}
Assertion
Ref Expression
reclem3pr (𝐴P → 1P ⊆ (𝐴 ·P 𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem reclem3pr
Dummy variables 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-1p 10202 . . . 4 1P = {𝑤𝑤 <Q 1Q}
21abeq2i 2900 . . 3 (𝑤 ∈ 1P𝑤 <Q 1Q)
3 ltrnq 10199 . . . . . . 7 (𝑤 <Q 1Q ↔ (*Q‘1Q) <Q (*Q𝑤))
4 mulcomnq 10173 . . . . . . . . 9 ((*Q‘1Q) ·Q 1Q) = (1Q ·Q (*Q‘1Q))
5 1nq 10148 . . . . . . . . . 10 1QQ
6 recclnq 10186 . . . . . . . . . 10 (1QQ → (*Q‘1Q) ∈ Q)
7 mulidnq 10183 . . . . . . . . . 10 ((*Q‘1Q) ∈ Q → ((*Q‘1Q) ·Q 1Q) = (*Q‘1Q))
85, 6, 7mp2b 10 . . . . . . . . 9 ((*Q‘1Q) ·Q 1Q) = (*Q‘1Q)
9 recidnq 10185 . . . . . . . . . 10 (1QQ → (1Q ·Q (*Q‘1Q)) = 1Q)
105, 9ax-mp 5 . . . . . . . . 9 (1Q ·Q (*Q‘1Q)) = 1Q
114, 8, 103eqtr3i 2810 . . . . . . . 8 (*Q‘1Q) = 1Q
1211breq1i 4936 . . . . . . 7 ((*Q‘1Q) <Q (*Q𝑤) ↔ 1Q <Q (*Q𝑤))
133, 12bitri 267 . . . . . 6 (𝑤 <Q 1Q ↔ 1Q <Q (*Q𝑤))
14 prlem936 10267 . . . . . 6 ((𝐴P ∧ 1Q <Q (*Q𝑤)) → ∃𝑣𝐴 ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴)
1513, 14sylan2b 584 . . . . 5 ((𝐴P𝑤 <Q 1Q) → ∃𝑣𝐴 ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴)
16 prnmax 10215 . . . . . . 7 ((𝐴P𝑣𝐴) → ∃𝑧𝐴 𝑣 <Q 𝑧)
1716ad2ant2r 734 . . . . . 6 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴)) → ∃𝑧𝐴 𝑣 <Q 𝑧)
18 elprnq 10211 . . . . . . . . . . . . 13 ((𝐴P𝑣𝐴) → 𝑣Q)
1918ad2ant2r 734 . . . . . . . . . . . 12 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴)) → 𝑣Q)
20193adant3 1112 . . . . . . . . . . 11 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴) ∧ 𝑣 <Q 𝑧) → 𝑣Q)
21 simp1r 1178 . . . . . . . . . . . 12 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴) ∧ 𝑣 <Q 𝑧) → 𝑤 <Q 1Q)
22 ltrelnq 10146 . . . . . . . . . . . . . 14 <Q ⊆ (Q × Q)
2322brel 5467 . . . . . . . . . . . . 13 (𝑤 <Q 1Q → (𝑤Q ∧ 1QQ))
2423simpld 487 . . . . . . . . . . . 12 (𝑤 <Q 1Q𝑤Q)
2521, 24syl 17 . . . . . . . . . . 11 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴) ∧ 𝑣 <Q 𝑧) → 𝑤Q)
26 simp3 1118 . . . . . . . . . . 11 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴) ∧ 𝑣 <Q 𝑧) → 𝑣 <Q 𝑧)
27 simp2r 1180 . . . . . . . . . . 11 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴) ∧ 𝑣 <Q 𝑧) → ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴)
28 ltrnq 10199 . . . . . . . . . . . . . . . . 17 (𝑣 <Q 𝑧 ↔ (*Q𝑧) <Q (*Q𝑣))
29 fvex 6512 . . . . . . . . . . . . . . . . . 18 (*Q𝑧) ∈ V
30 fvex 6512 . . . . . . . . . . . . . . . . . 18 (*Q𝑣) ∈ V
31 ltmnq 10192 . . . . . . . . . . . . . . . . . 18 (𝑢Q → (𝑥 <Q 𝑦 ↔ (𝑢 ·Q 𝑥) <Q (𝑢 ·Q 𝑦)))
32 vex 3418 . . . . . . . . . . . . . . . . . 18 𝑤 ∈ V
33 mulcomnq 10173 . . . . . . . . . . . . . . . . . 18 (𝑥 ·Q 𝑦) = (𝑦 ·Q 𝑥)
3429, 30, 31, 32, 33caovord2 7176 . . . . . . . . . . . . . . . . 17 (𝑤Q → ((*Q𝑧) <Q (*Q𝑣) ↔ ((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤)))
3528, 34syl5bb 275 . . . . . . . . . . . . . . . 16 (𝑤Q → (𝑣 <Q 𝑧 ↔ ((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤)))
3635adantl 474 . . . . . . . . . . . . . . 15 ((𝑣Q𝑤Q) → (𝑣 <Q 𝑧 ↔ ((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤)))
3736biimpd 221 . . . . . . . . . . . . . 14 ((𝑣Q𝑤Q) → (𝑣 <Q 𝑧 → ((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤)))
38 mulcomnq 10173 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 ·Q (*Q𝑣)) = ((*Q𝑣) ·Q 𝑣)
39 recidnq 10185 . . . . . . . . . . . . . . . . . . . . 21 (𝑣Q → (𝑣 ·Q (*Q𝑣)) = 1Q)
4038, 39syl5eqr 2828 . . . . . . . . . . . . . . . . . . . 20 (𝑣Q → ((*Q𝑣) ·Q 𝑣) = 1Q)
41 recidnq 10185 . . . . . . . . . . . . . . . . . . . 20 (𝑤Q → (𝑤 ·Q (*Q𝑤)) = 1Q)
4240, 41oveqan12d 6995 . . . . . . . . . . . . . . . . . . 19 ((𝑣Q𝑤Q) → (((*Q𝑣) ·Q 𝑣) ·Q (𝑤 ·Q (*Q𝑤))) = (1Q ·Q 1Q))
43 vex 3418 . . . . . . . . . . . . . . . . . . . 20 𝑣 ∈ V
44 mulassnq 10179 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ·Q 𝑦) ·Q 𝑢) = (𝑥 ·Q (𝑦 ·Q 𝑢))
45 fvex 6512 . . . . . . . . . . . . . . . . . . . 20 (*Q𝑤) ∈ V
4630, 43, 32, 33, 44, 45caov4 7195 . . . . . . . . . . . . . . . . . . 19 (((*Q𝑣) ·Q 𝑣) ·Q (𝑤 ·Q (*Q𝑤))) = (((*Q𝑣) ·Q 𝑤) ·Q (𝑣 ·Q (*Q𝑤)))
47 mulidnq 10183 . . . . . . . . . . . . . . . . . . . 20 (1QQ → (1Q ·Q 1Q) = 1Q)
485, 47ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (1Q ·Q 1Q) = 1Q
4942, 46, 483eqtr3g 2837 . . . . . . . . . . . . . . . . . 18 ((𝑣Q𝑤Q) → (((*Q𝑣) ·Q 𝑤) ·Q (𝑣 ·Q (*Q𝑤))) = 1Q)
50 recclnq 10186 . . . . . . . . . . . . . . . . . . . 20 (𝑣Q → (*Q𝑣) ∈ Q)
51 mulclnq 10167 . . . . . . . . . . . . . . . . . . . 20 (((*Q𝑣) ∈ Q𝑤Q) → ((*Q𝑣) ·Q 𝑤) ∈ Q)
5250, 51sylan 572 . . . . . . . . . . . . . . . . . . 19 ((𝑣Q𝑤Q) → ((*Q𝑣) ·Q 𝑤) ∈ Q)
53 recmulnq 10184 . . . . . . . . . . . . . . . . . . 19 (((*Q𝑣) ·Q 𝑤) ∈ Q → ((*Q‘((*Q𝑣) ·Q 𝑤)) = (𝑣 ·Q (*Q𝑤)) ↔ (((*Q𝑣) ·Q 𝑤) ·Q (𝑣 ·Q (*Q𝑤))) = 1Q))
5452, 53syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑣Q𝑤Q) → ((*Q‘((*Q𝑣) ·Q 𝑤)) = (𝑣 ·Q (*Q𝑤)) ↔ (((*Q𝑣) ·Q 𝑤) ·Q (𝑣 ·Q (*Q𝑤))) = 1Q))
5549, 54mpbird 249 . . . . . . . . . . . . . . . . 17 ((𝑣Q𝑤Q) → (*Q‘((*Q𝑣) ·Q 𝑤)) = (𝑣 ·Q (*Q𝑤)))
5655eleq1d 2850 . . . . . . . . . . . . . . . 16 ((𝑣Q𝑤Q) → ((*Q‘((*Q𝑣) ·Q 𝑤)) ∈ 𝐴 ↔ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴))
5756notbid 310 . . . . . . . . . . . . . . 15 ((𝑣Q𝑤Q) → (¬ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ 𝐴 ↔ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴))
5857biimprd 240 . . . . . . . . . . . . . 14 ((𝑣Q𝑤Q) → (¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴 → ¬ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ 𝐴))
5937, 58anim12d 599 . . . . . . . . . . . . 13 ((𝑣Q𝑤Q) → ((𝑣 <Q 𝑧 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴) → (((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤) ∧ ¬ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ 𝐴)))
60 ovex 7008 . . . . . . . . . . . . . . 15 ((*Q𝑣) ·Q 𝑤) ∈ V
61 breq2 4933 . . . . . . . . . . . . . . . 16 (𝑦 = ((*Q𝑣) ·Q 𝑤) → (((*Q𝑧) ·Q 𝑤) <Q 𝑦 ↔ ((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤)))
62 fveq2 6499 . . . . . . . . . . . . . . . . . 18 (𝑦 = ((*Q𝑣) ·Q 𝑤) → (*Q𝑦) = (*Q‘((*Q𝑣) ·Q 𝑤)))
6362eleq1d 2850 . . . . . . . . . . . . . . . . 17 (𝑦 = ((*Q𝑣) ·Q 𝑤) → ((*Q𝑦) ∈ 𝐴 ↔ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ 𝐴))
6463notbid 310 . . . . . . . . . . . . . . . 16 (𝑦 = ((*Q𝑣) ·Q 𝑤) → (¬ (*Q𝑦) ∈ 𝐴 ↔ ¬ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ 𝐴))
6561, 64anbi12d 621 . . . . . . . . . . . . . . 15 (𝑦 = ((*Q𝑣) ·Q 𝑤) → ((((*Q𝑧) ·Q 𝑤) <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) ↔ (((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤) ∧ ¬ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ 𝐴)))
6660, 65spcev 3525 . . . . . . . . . . . . . 14 ((((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤) ∧ ¬ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ 𝐴) → ∃𝑦(((*Q𝑧) ·Q 𝑤) <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴))
67 ovex 7008 . . . . . . . . . . . . . . 15 ((*Q𝑧) ·Q 𝑤) ∈ V
68 breq1 4932 . . . . . . . . . . . . . . . . 17 (𝑥 = ((*Q𝑧) ·Q 𝑤) → (𝑥 <Q 𝑦 ↔ ((*Q𝑧) ·Q 𝑤) <Q 𝑦))
6968anbi1d 620 . . . . . . . . . . . . . . . 16 (𝑥 = ((*Q𝑧) ·Q 𝑤) → ((𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) ↔ (((*Q𝑧) ·Q 𝑤) <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)))
7069exbidv 1880 . . . . . . . . . . . . . . 15 (𝑥 = ((*Q𝑧) ·Q 𝑤) → (∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) ↔ ∃𝑦(((*Q𝑧) ·Q 𝑤) <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)))
71 reclempr.1 . . . . . . . . . . . . . . 15 𝐵 = {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}
7267, 70, 71elab2 3585 . . . . . . . . . . . . . 14 (((*Q𝑧) ·Q 𝑤) ∈ 𝐵 ↔ ∃𝑦(((*Q𝑧) ·Q 𝑤) <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴))
7366, 72sylibr 226 . . . . . . . . . . . . 13 ((((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤) ∧ ¬ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ 𝐴) → ((*Q𝑧) ·Q 𝑤) ∈ 𝐵)
7459, 73syl6 35 . . . . . . . . . . . 12 ((𝑣Q𝑤Q) → ((𝑣 <Q 𝑧 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴) → ((*Q𝑧) ·Q 𝑤) ∈ 𝐵))
7574imp 398 . . . . . . . . . . 11 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴)) → ((*Q𝑧) ·Q 𝑤) ∈ 𝐵)
7620, 25, 26, 27, 75syl22anc 826 . . . . . . . . . 10 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴) ∧ 𝑣 <Q 𝑧) → ((*Q𝑧) ·Q 𝑤) ∈ 𝐵)
7722brel 5467 . . . . . . . . . . . . 13 (𝑣 <Q 𝑧 → (𝑣Q𝑧Q))
7877simprd 488 . . . . . . . . . . . 12 (𝑣 <Q 𝑧𝑧Q)
79783ad2ant3 1115 . . . . . . . . . . 11 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴) ∧ 𝑣 <Q 𝑧) → 𝑧Q)
80 mulcomnq 10173 . . . . . . . . . . . . 13 (𝑤 ·Q 1Q) = (1Q ·Q 𝑤)
81 mulidnq 10183 . . . . . . . . . . . . 13 (𝑤Q → (𝑤 ·Q 1Q) = 𝑤)
8280, 81syl5reqr 2829 . . . . . . . . . . . 12 (𝑤Q𝑤 = (1Q ·Q 𝑤))
83 mulassnq 10179 . . . . . . . . . . . . 13 ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤))
84 recidnq 10185 . . . . . . . . . . . . . 14 (𝑧Q → (𝑧 ·Q (*Q𝑧)) = 1Q)
8584oveq1d 6991 . . . . . . . . . . . . 13 (𝑧Q → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (1Q ·Q 𝑤))
8683, 85syl5reqr 2829 . . . . . . . . . . . 12 (𝑧Q → (1Q ·Q 𝑤) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
8782, 86sylan9eqr 2836 . . . . . . . . . . 11 ((𝑧Q𝑤Q) → 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
8879, 25, 87syl2anc 576 . . . . . . . . . 10 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴) ∧ 𝑣 <Q 𝑧) → 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
89 oveq2 6984 . . . . . . . . . . 11 (𝑥 = ((*Q𝑧) ·Q 𝑤) → (𝑧 ·Q 𝑥) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
9089rspceeqv 3553 . . . . . . . . . 10 ((((*Q𝑧) ·Q 𝑤) ∈ 𝐵𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤))) → ∃𝑥𝐵 𝑤 = (𝑧 ·Q 𝑥))
9176, 88, 90syl2anc 576 . . . . . . . . 9 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴) ∧ 𝑣 <Q 𝑧) → ∃𝑥𝐵 𝑤 = (𝑧 ·Q 𝑥))
92913expia 1101 . . . . . . . 8 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴)) → (𝑣 <Q 𝑧 → ∃𝑥𝐵 𝑤 = (𝑧 ·Q 𝑥)))
9392reximdv 3218 . . . . . . 7 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴)) → (∃𝑧𝐴 𝑣 <Q 𝑧 → ∃𝑧𝐴𝑥𝐵 𝑤 = (𝑧 ·Q 𝑥)))
9471reclem2pr 10268 . . . . . . . . 9 (𝐴P𝐵P)
95 df-mp 10204 . . . . . . . . . 10 ·P = (𝑦P, 𝑤P ↦ {𝑢 ∣ ∃𝑓𝑦𝑔𝑤 𝑢 = (𝑓 ·Q 𝑔)})
96 mulclnq 10167 . . . . . . . . . 10 ((𝑓Q𝑔Q) → (𝑓 ·Q 𝑔) ∈ Q)
9795, 96genpelv 10220 . . . . . . . . 9 ((𝐴P𝐵P) → (𝑤 ∈ (𝐴 ·P 𝐵) ↔ ∃𝑧𝐴𝑥𝐵 𝑤 = (𝑧 ·Q 𝑥)))
9894, 97mpdan 674 . . . . . . . 8 (𝐴P → (𝑤 ∈ (𝐴 ·P 𝐵) ↔ ∃𝑧𝐴𝑥𝐵 𝑤 = (𝑧 ·Q 𝑥)))
9998ad2antrr 713 . . . . . . 7 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴)) → (𝑤 ∈ (𝐴 ·P 𝐵) ↔ ∃𝑧𝐴𝑥𝐵 𝑤 = (𝑧 ·Q 𝑥)))
10093, 99sylibrd 251 . . . . . 6 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴)) → (∃𝑧𝐴 𝑣 <Q 𝑧𝑤 ∈ (𝐴 ·P 𝐵)))
10117, 100mpd 15 . . . . 5 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴)) → 𝑤 ∈ (𝐴 ·P 𝐵))
10215, 101rexlimddv 3236 . . . 4 ((𝐴P𝑤 <Q 1Q) → 𝑤 ∈ (𝐴 ·P 𝐵))
103102ex 405 . . 3 (𝐴P → (𝑤 <Q 1Q𝑤 ∈ (𝐴 ·P 𝐵)))
1042, 103syl5bi 234 . 2 (𝐴P → (𝑤 ∈ 1P𝑤 ∈ (𝐴 ·P 𝐵)))
105104ssrdv 3864 1 (𝐴P → 1P ⊆ (𝐴 ·P 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wex 1742  wcel 2050  {cab 2758  wrex 3089  wss 3829   class class class wbr 4929  cfv 6188  (class class class)co 6976  Qcnq 10072  1Qc1q 10073   ·Q cmq 10076  *Qcrq 10077   <Q cltq 10078  Pcnp 10079  1Pc1p 10080   ·P cmp 10082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-inf2 8898
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-oadd 7909  df-omul 7910  df-er 8089  df-ni 10092  df-pli 10093  df-mi 10094  df-lti 10095  df-plpq 10128  df-mpq 10129  df-ltpq 10130  df-enq 10131  df-nq 10132  df-erq 10133  df-plq 10134  df-mq 10135  df-1nq 10136  df-rq 10137  df-ltnq 10138  df-np 10201  df-1p 10202  df-mp 10204
This theorem is referenced by:  reclem4pr  10270
  Copyright terms: Public domain W3C validator