Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnindf Structured version   Visualization version   GIF version

Theorem nnindf 30527
Description: Principle of Mathematical Induction, using a bound-variable hypothesis instead of distinct variables. (Contributed by Thierry Arnoux, 6-May-2018.)
Hypotheses
Ref Expression
nnindf.x 𝑦𝜑
nnindf.1 (𝑥 = 1 → (𝜑𝜓))
nnindf.2 (𝑥 = 𝑦 → (𝜑𝜒))
nnindf.3 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
nnindf.4 (𝑥 = 𝐴 → (𝜑𝜏))
nnindf.5 𝜓
nnindf.6 (𝑦 ∈ ℕ → (𝜒𝜃))
Assertion
Ref Expression
nnindf (𝐴 ∈ ℕ → 𝜏)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜒,𝑥   𝜓,𝑥   𝜏,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem nnindf
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 1nn 11641 . . . . . 6 1 ∈ ℕ
2 nnindf.5 . . . . . 6 𝜓
3 nnindf.1 . . . . . . 7 (𝑥 = 1 → (𝜑𝜓))
43elrab 3678 . . . . . 6 (1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (1 ∈ ℕ ∧ 𝜓))
51, 2, 4mpbir2an 709 . . . . 5 1 ∈ {𝑥 ∈ ℕ ∣ 𝜑}
6 elrabi 3673 . . . . . . . 8 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑦 ∈ ℕ)
7 peano2nn 11642 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ)
87a1d 25 . . . . . . . . . 10 (𝑦 ∈ ℕ → (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ))
9 nnindf.6 . . . . . . . . . 10 (𝑦 ∈ ℕ → (𝜒𝜃))
108, 9anim12d 610 . . . . . . . . 9 (𝑦 ∈ ℕ → ((𝑦 ∈ ℕ ∧ 𝜒) → ((𝑦 + 1) ∈ ℕ ∧ 𝜃)))
11 nnindf.2 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝜑𝜒))
1211elrab 3678 . . . . . . . . 9 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑦 ∈ ℕ ∧ 𝜒))
13 nnindf.3 . . . . . . . . . 10 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
1413elrab 3678 . . . . . . . . 9 ((𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ ((𝑦 + 1) ∈ ℕ ∧ 𝜃))
1510, 12, 143imtr4g 298 . . . . . . . 8 (𝑦 ∈ ℕ → (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}))
166, 15mpcom 38 . . . . . . 7 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑})
1716rgen 3146 . . . . . 6 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}
18 nnindf.x . . . . . . . 8 𝑦𝜑
19 nfcv 2975 . . . . . . . 8 𝑦
2018, 19nfrabw 3384 . . . . . . 7 𝑦{𝑥 ∈ ℕ ∣ 𝜑}
21 nfcv 2975 . . . . . . 7 𝑤{𝑥 ∈ ℕ ∣ 𝜑}
22 nfv 1908 . . . . . . 7 𝑤(𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}
2320nfel2 2994 . . . . . . 7 𝑦(𝑤 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}
24 oveq1 7155 . . . . . . . 8 (𝑦 = 𝑤 → (𝑦 + 1) = (𝑤 + 1))
2524eleq1d 2895 . . . . . . 7 (𝑦 = 𝑤 → ((𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑤 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}))
2620, 21, 22, 23, 25cbvralfw 3436 . . . . . 6 (∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ ∀𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑤 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑})
2717, 26mpbi 232 . . . . 5 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑤 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}
28 peano5nni 11633 . . . . 5 ((1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑤 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}) → ℕ ⊆ {𝑥 ∈ ℕ ∣ 𝜑})
295, 27, 28mp2an 690 . . . 4 ℕ ⊆ {𝑥 ∈ ℕ ∣ 𝜑}
3029sseli 3961 . . 3 (𝐴 ∈ ℕ → 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝜑})
31 nnindf.4 . . . 4 (𝑥 = 𝐴 → (𝜑𝜏))
3231elrab 3678 . . 3 (𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝐴 ∈ ℕ ∧ 𝜏))
3330, 32sylib 220 . 2 (𝐴 ∈ ℕ → (𝐴 ∈ ℕ ∧ 𝜏))
3433simprd 498 1 (𝐴 ∈ ℕ → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1530  wnf 1777  wcel 2107  wral 3136  {crab 3140  wss 3934  (class class class)co 7148  1c1 10530   + caddc 10532  cn 11630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-1cn 10587
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151  df-om 7573  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-nn 11631
This theorem is referenced by:  nn0min  30529
  Copyright terms: Public domain W3C validator