Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnindf Structured version   Visualization version   GIF version

Theorem nnindf 32821
Description: Principle of Mathematical Induction, using a bound-variable hypothesis instead of distinct variables. (Contributed by Thierry Arnoux, 6-May-2018.)
Hypotheses
Ref Expression
nnindf.x 𝑦𝜑
nnindf.1 (𝑥 = 1 → (𝜑𝜓))
nnindf.2 (𝑥 = 𝑦 → (𝜑𝜒))
nnindf.3 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
nnindf.4 (𝑥 = 𝐴 → (𝜑𝜏))
nnindf.5 𝜓
nnindf.6 (𝑦 ∈ ℕ → (𝜒𝜃))
Assertion
Ref Expression
nnindf (𝐴 ∈ ℕ → 𝜏)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜒,𝑥   𝜓,𝑥   𝜏,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem nnindf
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 1nn 12277 . . . . . 6 1 ∈ ℕ
2 nnindf.5 . . . . . 6 𝜓
3 nnindf.1 . . . . . . 7 (𝑥 = 1 → (𝜑𝜓))
43elrab 3692 . . . . . 6 (1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (1 ∈ ℕ ∧ 𝜓))
51, 2, 4mpbir2an 711 . . . . 5 1 ∈ {𝑥 ∈ ℕ ∣ 𝜑}
6 elrabi 3687 . . . . . . . 8 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑦 ∈ ℕ)
7 peano2nn 12278 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ)
87a1d 25 . . . . . . . . . 10 (𝑦 ∈ ℕ → (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ))
9 nnindf.6 . . . . . . . . . 10 (𝑦 ∈ ℕ → (𝜒𝜃))
108, 9anim12d 609 . . . . . . . . 9 (𝑦 ∈ ℕ → ((𝑦 ∈ ℕ ∧ 𝜒) → ((𝑦 + 1) ∈ ℕ ∧ 𝜃)))
11 nnindf.2 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝜑𝜒))
1211elrab 3692 . . . . . . . . 9 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑦 ∈ ℕ ∧ 𝜒))
13 nnindf.3 . . . . . . . . . 10 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
1413elrab 3692 . . . . . . . . 9 ((𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ ((𝑦 + 1) ∈ ℕ ∧ 𝜃))
1510, 12, 143imtr4g 296 . . . . . . . 8 (𝑦 ∈ ℕ → (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}))
166, 15mpcom 38 . . . . . . 7 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑})
1716rgen 3063 . . . . . 6 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}
18 nnindf.x . . . . . . . 8 𝑦𝜑
19 nfcv 2905 . . . . . . . 8 𝑦
2018, 19nfrabw 3475 . . . . . . 7 𝑦{𝑥 ∈ ℕ ∣ 𝜑}
21 nfcv 2905 . . . . . . 7 𝑤{𝑥 ∈ ℕ ∣ 𝜑}
22 nfv 1914 . . . . . . 7 𝑤(𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}
2320nfel2 2924 . . . . . . 7 𝑦(𝑤 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}
24 oveq1 7438 . . . . . . . 8 (𝑦 = 𝑤 → (𝑦 + 1) = (𝑤 + 1))
2524eleq1d 2826 . . . . . . 7 (𝑦 = 𝑤 → ((𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑤 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}))
2620, 21, 22, 23, 25cbvralfw 3304 . . . . . 6 (∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ ∀𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑤 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑})
2717, 26mpbi 230 . . . . 5 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑤 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}
28 peano5nni 12269 . . . . 5 ((1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑤 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}) → ℕ ⊆ {𝑥 ∈ ℕ ∣ 𝜑})
295, 27, 28mp2an 692 . . . 4 ℕ ⊆ {𝑥 ∈ ℕ ∣ 𝜑}
3029sseli 3979 . . 3 (𝐴 ∈ ℕ → 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝜑})
31 nnindf.4 . . . 4 (𝑥 = 𝐴 → (𝜑𝜏))
3231elrab 3692 . . 3 (𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝐴 ∈ ℕ ∧ 𝜏))
3330, 32sylib 218 . 2 (𝐴 ∈ ℕ → (𝐴 ∈ ℕ ∧ 𝜏))
3433simprd 495 1 (𝐴 ∈ ℕ → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2108  wral 3061  {crab 3436  wss 3951  (class class class)co 7431  1c1 11156   + caddc 11158  cn 12266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755  ax-1cn 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-nn 12267
This theorem is referenced by:  nn0min  32822
  Copyright terms: Public domain W3C validator