Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nnindf | Structured version Visualization version GIF version |
Description: Principle of Mathematical Induction, using a bound-variable hypothesis instead of distinct variables. (Contributed by Thierry Arnoux, 6-May-2018.) |
Ref | Expression |
---|---|
nnindf.x | ⊢ Ⅎ𝑦𝜑 |
nnindf.1 | ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) |
nnindf.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
nnindf.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) |
nnindf.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
nnindf.5 | ⊢ 𝜓 |
nnindf.6 | ⊢ (𝑦 ∈ ℕ → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
nnindf | ⊢ (𝐴 ∈ ℕ → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 11984 | . . . . . 6 ⊢ 1 ∈ ℕ | |
2 | nnindf.5 | . . . . . 6 ⊢ 𝜓 | |
3 | nnindf.1 | . . . . . . 7 ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) | |
4 | 3 | elrab 3624 | . . . . . 6 ⊢ (1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (1 ∈ ℕ ∧ 𝜓)) |
5 | 1, 2, 4 | mpbir2an 708 | . . . . 5 ⊢ 1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} |
6 | elrabi 3618 | . . . . . . . 8 ⊢ (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑦 ∈ ℕ) | |
7 | peano2nn 11985 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ) | |
8 | 7 | a1d 25 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℕ → (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ)) |
9 | nnindf.6 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℕ → (𝜒 → 𝜃)) | |
10 | 8, 9 | anim12d 609 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℕ → ((𝑦 ∈ ℕ ∧ 𝜒) → ((𝑦 + 1) ∈ ℕ ∧ 𝜃))) |
11 | nnindf.2 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
12 | 11 | elrab 3624 | . . . . . . . . 9 ⊢ (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑦 ∈ ℕ ∧ 𝜒)) |
13 | nnindf.3 | . . . . . . . . . 10 ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) | |
14 | 13 | elrab 3624 | . . . . . . . . 9 ⊢ ((𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ ((𝑦 + 1) ∈ ℕ ∧ 𝜃)) |
15 | 10, 12, 14 | 3imtr4g 296 | . . . . . . . 8 ⊢ (𝑦 ∈ ℕ → (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑})) |
16 | 6, 15 | mpcom 38 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}) |
17 | 16 | rgen 3074 | . . . . . 6 ⊢ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} |
18 | nnindf.x | . . . . . . . 8 ⊢ Ⅎ𝑦𝜑 | |
19 | nfcv 2907 | . . . . . . . 8 ⊢ Ⅎ𝑦ℕ | |
20 | 18, 19 | nfrabw 3318 | . . . . . . 7 ⊢ Ⅎ𝑦{𝑥 ∈ ℕ ∣ 𝜑} |
21 | nfcv 2907 | . . . . . . 7 ⊢ Ⅎ𝑤{𝑥 ∈ ℕ ∣ 𝜑} | |
22 | nfv 1917 | . . . . . . 7 ⊢ Ⅎ𝑤(𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} | |
23 | 20 | nfel2 2925 | . . . . . . 7 ⊢ Ⅎ𝑦(𝑤 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} |
24 | oveq1 7282 | . . . . . . . 8 ⊢ (𝑦 = 𝑤 → (𝑦 + 1) = (𝑤 + 1)) | |
25 | 24 | eleq1d 2823 | . . . . . . 7 ⊢ (𝑦 = 𝑤 → ((𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑤 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑})) |
26 | 20, 21, 22, 23, 25 | cbvralfw 3368 | . . . . . 6 ⊢ (∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ ∀𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑤 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}) |
27 | 17, 26 | mpbi 229 | . . . . 5 ⊢ ∀𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑤 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} |
28 | peano5nni 11976 | . . . . 5 ⊢ ((1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑤 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}) → ℕ ⊆ {𝑥 ∈ ℕ ∣ 𝜑}) | |
29 | 5, 27, 28 | mp2an 689 | . . . 4 ⊢ ℕ ⊆ {𝑥 ∈ ℕ ∣ 𝜑} |
30 | 29 | sseli 3917 | . . 3 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝜑}) |
31 | nnindf.4 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
32 | 31 | elrab 3624 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝐴 ∈ ℕ ∧ 𝜏)) |
33 | 30, 32 | sylib 217 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐴 ∈ ℕ ∧ 𝜏)) |
34 | 33 | simprd 496 | 1 ⊢ (𝐴 ∈ ℕ → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 ∀wral 3064 {crab 3068 ⊆ wss 3887 (class class class)co 7275 1c1 10872 + caddc 10874 ℕcn 11973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 ax-1cn 10929 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-nn 11974 |
This theorem is referenced by: nn0min 31134 |
Copyright terms: Public domain | W3C validator |