![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nnindf | Structured version Visualization version GIF version |
Description: Principle of Mathematical Induction, using a bound-variable hypothesis instead of distinct variables. (Contributed by Thierry Arnoux, 6-May-2018.) |
Ref | Expression |
---|---|
nnindf.x | ⊢ Ⅎ𝑦𝜑 |
nnindf.1 | ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) |
nnindf.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
nnindf.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) |
nnindf.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
nnindf.5 | ⊢ 𝜓 |
nnindf.6 | ⊢ (𝑦 ∈ ℕ → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
nnindf | ⊢ (𝐴 ∈ ℕ → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 12222 | . . . . . 6 ⊢ 1 ∈ ℕ | |
2 | nnindf.5 | . . . . . 6 ⊢ 𝜓 | |
3 | nnindf.1 | . . . . . . 7 ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) | |
4 | 3 | elrab 3676 | . . . . . 6 ⊢ (1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (1 ∈ ℕ ∧ 𝜓)) |
5 | 1, 2, 4 | mpbir2an 708 | . . . . 5 ⊢ 1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} |
6 | elrabi 3670 | . . . . . . . 8 ⊢ (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑦 ∈ ℕ) | |
7 | peano2nn 12223 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ) | |
8 | 7 | a1d 25 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℕ → (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ)) |
9 | nnindf.6 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℕ → (𝜒 → 𝜃)) | |
10 | 8, 9 | anim12d 608 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℕ → ((𝑦 ∈ ℕ ∧ 𝜒) → ((𝑦 + 1) ∈ ℕ ∧ 𝜃))) |
11 | nnindf.2 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
12 | 11 | elrab 3676 | . . . . . . . . 9 ⊢ (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑦 ∈ ℕ ∧ 𝜒)) |
13 | nnindf.3 | . . . . . . . . . 10 ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) | |
14 | 13 | elrab 3676 | . . . . . . . . 9 ⊢ ((𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ ((𝑦 + 1) ∈ ℕ ∧ 𝜃)) |
15 | 10, 12, 14 | 3imtr4g 296 | . . . . . . . 8 ⊢ (𝑦 ∈ ℕ → (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑})) |
16 | 6, 15 | mpcom 38 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}) |
17 | 16 | rgen 3055 | . . . . . 6 ⊢ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} |
18 | nnindf.x | . . . . . . . 8 ⊢ Ⅎ𝑦𝜑 | |
19 | nfcv 2895 | . . . . . . . 8 ⊢ Ⅎ𝑦ℕ | |
20 | 18, 19 | nfrabw 3460 | . . . . . . 7 ⊢ Ⅎ𝑦{𝑥 ∈ ℕ ∣ 𝜑} |
21 | nfcv 2895 | . . . . . . 7 ⊢ Ⅎ𝑤{𝑥 ∈ ℕ ∣ 𝜑} | |
22 | nfv 1909 | . . . . . . 7 ⊢ Ⅎ𝑤(𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} | |
23 | 20 | nfel2 2913 | . . . . . . 7 ⊢ Ⅎ𝑦(𝑤 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} |
24 | oveq1 7409 | . . . . . . . 8 ⊢ (𝑦 = 𝑤 → (𝑦 + 1) = (𝑤 + 1)) | |
25 | 24 | eleq1d 2810 | . . . . . . 7 ⊢ (𝑦 = 𝑤 → ((𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑤 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑})) |
26 | 20, 21, 22, 23, 25 | cbvralfw 3293 | . . . . . 6 ⊢ (∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ ∀𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑤 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}) |
27 | 17, 26 | mpbi 229 | . . . . 5 ⊢ ∀𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑤 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} |
28 | peano5nni 12214 | . . . . 5 ⊢ ((1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑤 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}) → ℕ ⊆ {𝑥 ∈ ℕ ∣ 𝜑}) | |
29 | 5, 27, 28 | mp2an 689 | . . . 4 ⊢ ℕ ⊆ {𝑥 ∈ ℕ ∣ 𝜑} |
30 | 29 | sseli 3971 | . . 3 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝜑}) |
31 | nnindf.4 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
32 | 31 | elrab 3676 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝐴 ∈ ℕ ∧ 𝜏)) |
33 | 30, 32 | sylib 217 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐴 ∈ ℕ ∧ 𝜏)) |
34 | 33 | simprd 495 | 1 ⊢ (𝐴 ∈ ℕ → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 Ⅎwnf 1777 ∈ wcel 2098 ∀wral 3053 {crab 3424 ⊆ wss 3941 (class class class)co 7402 1c1 11108 + caddc 11110 ℕcn 12211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 ax-un 7719 ax-1cn 11165 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-om 7850 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-nn 12212 |
This theorem is referenced by: nn0min 32519 |
Copyright terms: Public domain | W3C validator |