Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnindf Structured version   Visualization version   GIF version

Theorem nnindf 30537
Description: Principle of Mathematical Induction, using a bound-variable hypothesis instead of distinct variables. (Contributed by Thierry Arnoux, 6-May-2018.)
Hypotheses
Ref Expression
nnindf.x 𝑦𝜑
nnindf.1 (𝑥 = 1 → (𝜑𝜓))
nnindf.2 (𝑥 = 𝑦 → (𝜑𝜒))
nnindf.3 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
nnindf.4 (𝑥 = 𝐴 → (𝜑𝜏))
nnindf.5 𝜓
nnindf.6 (𝑦 ∈ ℕ → (𝜒𝜃))
Assertion
Ref Expression
nnindf (𝐴 ∈ ℕ → 𝜏)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜒,𝑥   𝜓,𝑥   𝜏,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem nnindf
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 1nn 11651 . . . . . 6 1 ∈ ℕ
2 nnindf.5 . . . . . 6 𝜓
3 nnindf.1 . . . . . . 7 (𝑥 = 1 → (𝜑𝜓))
43elrab 3682 . . . . . 6 (1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (1 ∈ ℕ ∧ 𝜓))
51, 2, 4mpbir2an 709 . . . . 5 1 ∈ {𝑥 ∈ ℕ ∣ 𝜑}
6 elrabi 3677 . . . . . . . 8 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑦 ∈ ℕ)
7 peano2nn 11652 . . . . . . . . . . 11 (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ)
87a1d 25 . . . . . . . . . 10 (𝑦 ∈ ℕ → (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ))
9 nnindf.6 . . . . . . . . . 10 (𝑦 ∈ ℕ → (𝜒𝜃))
108, 9anim12d 610 . . . . . . . . 9 (𝑦 ∈ ℕ → ((𝑦 ∈ ℕ ∧ 𝜒) → ((𝑦 + 1) ∈ ℕ ∧ 𝜃)))
11 nnindf.2 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝜑𝜒))
1211elrab 3682 . . . . . . . . 9 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑦 ∈ ℕ ∧ 𝜒))
13 nnindf.3 . . . . . . . . . 10 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
1413elrab 3682 . . . . . . . . 9 ((𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ ((𝑦 + 1) ∈ ℕ ∧ 𝜃))
1510, 12, 143imtr4g 298 . . . . . . . 8 (𝑦 ∈ ℕ → (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}))
166, 15mpcom 38 . . . . . . 7 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑})
1716rgen 3150 . . . . . 6 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}
18 nnindf.x . . . . . . . 8 𝑦𝜑
19 nfcv 2979 . . . . . . . 8 𝑦
2018, 19nfrabw 3387 . . . . . . 7 𝑦{𝑥 ∈ ℕ ∣ 𝜑}
21 nfcv 2979 . . . . . . 7 𝑤{𝑥 ∈ ℕ ∣ 𝜑}
22 nfv 1915 . . . . . . 7 𝑤(𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}
2320nfel2 2998 . . . . . . 7 𝑦(𝑤 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}
24 oveq1 7165 . . . . . . . 8 (𝑦 = 𝑤 → (𝑦 + 1) = (𝑤 + 1))
2524eleq1d 2899 . . . . . . 7 (𝑦 = 𝑤 → ((𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑤 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}))
2620, 21, 22, 23, 25cbvralfw 3439 . . . . . 6 (∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ ∀𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑤 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑})
2717, 26mpbi 232 . . . . 5 𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑤 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}
28 peano5nni 11643 . . . . 5 ((1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑤 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑤 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}) → ℕ ⊆ {𝑥 ∈ ℕ ∣ 𝜑})
295, 27, 28mp2an 690 . . . 4 ℕ ⊆ {𝑥 ∈ ℕ ∣ 𝜑}
3029sseli 3965 . . 3 (𝐴 ∈ ℕ → 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝜑})
31 nnindf.4 . . . 4 (𝑥 = 𝐴 → (𝜑𝜏))
3231elrab 3682 . . 3 (𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝐴 ∈ ℕ ∧ 𝜏))
3330, 32sylib 220 . 2 (𝐴 ∈ ℕ → (𝐴 ∈ ℕ ∧ 𝜏))
3433simprd 498 1 (𝐴 ∈ ℕ → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wnf 1784  wcel 2114  wral 3140  {crab 3144  wss 3938  (class class class)co 7158  1c1 10540   + caddc 10542  cn 11640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-1cn 10597
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-nn 11641
This theorem is referenced by:  nn0min  30538
  Copyright terms: Public domain W3C validator