| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | df-reu 3381 | . 2
⊢
(∃!𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝑥 = 𝐶) ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝑥 = 𝐶))) | 
| 2 |  | anass 468 | . . . . . 6
⊢ (((𝑦 ∈ 𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝜑)) ∧ 𝑥 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ((𝐶 ∈ 𝐴 ∧ 𝜑) ∧ 𝑥 = 𝐶))) | 
| 3 |  | rabid 3458 | . . . . . . 7
⊢ (𝑦 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} ↔ (𝑦 ∈ 𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝜑))) | 
| 4 | 3 | anbi1i 624 | . . . . . 6
⊢ ((𝑦 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} ∧ 𝑥 = 𝐶) ↔ ((𝑦 ∈ 𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝜑)) ∧ 𝑥 = 𝐶)) | 
| 5 |  | anass 468 | . . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝑥 = 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝑥 = 𝐶))) | 
| 6 |  | eleq1 2829 | . . . . . . . . . 10
⊢ (𝑥 = 𝐶 → (𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | 
| 7 | 6 | anbi1d 631 | . . . . . . . . 9
⊢ (𝑥 = 𝐶 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝐶 ∈ 𝐴 ∧ 𝜑))) | 
| 8 | 7 | pm5.32ri 575 | . . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝑥 = 𝐶) ↔ ((𝐶 ∈ 𝐴 ∧ 𝜑) ∧ 𝑥 = 𝐶)) | 
| 9 | 5, 8 | bitr3i 277 | . . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝑥 = 𝐶)) ↔ ((𝐶 ∈ 𝐴 ∧ 𝜑) ∧ 𝑥 = 𝐶)) | 
| 10 | 9 | anbi2i 623 | . . . . . 6
⊢ ((𝑦 ∈ 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝑥 = 𝐶))) ↔ (𝑦 ∈ 𝐵 ∧ ((𝐶 ∈ 𝐴 ∧ 𝜑) ∧ 𝑥 = 𝐶))) | 
| 11 | 2, 4, 10 | 3bitr4ri 304 | . . . . 5
⊢ ((𝑦 ∈ 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝑥 = 𝐶))) ↔ (𝑦 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} ∧ 𝑥 = 𝐶)) | 
| 12 | 11 | rexbii2 3090 | . . . 4
⊢
(∃𝑦 ∈
𝐵 (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝑥 = 𝐶)) ↔ ∃𝑦 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)}𝑥 = 𝐶) | 
| 13 |  | r19.42v 3191 | . . . 4
⊢
(∃𝑦 ∈
𝐵 (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝑥 = 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝑥 = 𝐶))) | 
| 14 |  | nfrab1 3457 | . . . . 5
⊢
Ⅎ𝑦{𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} | 
| 15 |  | nfcv 2905 | . . . . 5
⊢
Ⅎ𝑧{𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} | 
| 16 |  | nfv 1914 | . . . . 5
⊢
Ⅎ𝑧 𝑥 = 𝐶 | 
| 17 |  | nfcsb1v 3923 | . . . . . 6
⊢
Ⅎ𝑦⦋𝑧 / 𝑦⦌𝐶 | 
| 18 | 17 | nfeq2 2923 | . . . . 5
⊢
Ⅎ𝑦 𝑥 = ⦋𝑧 / 𝑦⦌𝐶 | 
| 19 |  | csbeq1a 3913 | . . . . . 6
⊢ (𝑦 = 𝑧 → 𝐶 = ⦋𝑧 / 𝑦⦌𝐶) | 
| 20 | 19 | eqeq2d 2748 | . . . . 5
⊢ (𝑦 = 𝑧 → (𝑥 = 𝐶 ↔ 𝑥 = ⦋𝑧 / 𝑦⦌𝐶)) | 
| 21 | 14, 15, 16, 18, 20 | cbvrexfw 3305 | . . . 4
⊢
(∃𝑦 ∈
{𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)}𝑥 = 𝐶 ↔ ∃𝑧 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)}𝑥 = ⦋𝑧 / 𝑦⦌𝐶) | 
| 22 | 12, 13, 21 | 3bitr3i 301 | . . 3
⊢ ((𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝑥 = 𝐶)) ↔ ∃𝑧 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)}𝑥 = ⦋𝑧 / 𝑦⦌𝐶) | 
| 23 | 22 | eubii 2585 | . 2
⊢
(∃!𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝑥 = 𝐶)) ↔ ∃!𝑥∃𝑧 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)}𝑥 = ⦋𝑧 / 𝑦⦌𝐶) | 
| 24 |  | elex 3501 | . . . . . . . 8
⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ V) | 
| 25 | 24 | ad2antrl 728 | . . . . . . 7
⊢ ((𝑦 ∈ 𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝜑)) → 𝐶 ∈ V) | 
| 26 | 3, 25 | sylbi 217 | . . . . . 6
⊢ (𝑦 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} → 𝐶 ∈ V) | 
| 27 | 26 | rgen 3063 | . . . . 5
⊢
∀𝑦 ∈
{𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)}𝐶 ∈ V | 
| 28 |  | nfv 1914 | . . . . . 6
⊢
Ⅎ𝑧 𝐶 ∈ V | 
| 29 | 17 | nfel1 2922 | . . . . . 6
⊢
Ⅎ𝑦⦋𝑧 / 𝑦⦌𝐶 ∈ V | 
| 30 | 19 | eleq1d 2826 | . . . . . 6
⊢ (𝑦 = 𝑧 → (𝐶 ∈ V ↔ ⦋𝑧 / 𝑦⦌𝐶 ∈ V)) | 
| 31 | 14, 15, 28, 29, 30 | cbvralfw 3304 | . . . . 5
⊢
(∀𝑦 ∈
{𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)}𝐶 ∈ V ↔ ∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)}⦋𝑧 / 𝑦⦌𝐶 ∈ V) | 
| 32 | 27, 31 | mpbi 230 | . . . 4
⊢
∀𝑧 ∈
{𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)}⦋𝑧 / 𝑦⦌𝐶 ∈ V | 
| 33 |  | reusv2lem3 5400 | . . . 4
⊢
(∀𝑧 ∈
{𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)}⦋𝑧 / 𝑦⦌𝐶 ∈ V → (∃!𝑥∃𝑧 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)}𝑥 = ⦋𝑧 / 𝑦⦌𝐶 ↔ ∃!𝑥∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)}𝑥 = ⦋𝑧 / 𝑦⦌𝐶)) | 
| 34 | 32, 33 | ax-mp 5 | . . 3
⊢
(∃!𝑥∃𝑧 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)}𝑥 = ⦋𝑧 / 𝑦⦌𝐶 ↔ ∃!𝑥∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)}𝑥 = ⦋𝑧 / 𝑦⦌𝐶) | 
| 35 |  | df-ral 3062 | . . . . 5
⊢
(∀𝑧 ∈
{𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)}𝑥 = ⦋𝑧 / 𝑦⦌𝐶 ↔ ∀𝑧(𝑧 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} → 𝑥 = ⦋𝑧 / 𝑦⦌𝐶)) | 
| 36 |  | nfv 1914 | . . . . . 6
⊢
Ⅎ𝑧(𝑦 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} → 𝑥 = 𝐶) | 
| 37 | 14 | nfcri 2897 | . . . . . . 7
⊢
Ⅎ𝑦 𝑧 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} | 
| 38 | 37, 18 | nfim 1896 | . . . . . 6
⊢
Ⅎ𝑦(𝑧 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} → 𝑥 = ⦋𝑧 / 𝑦⦌𝐶) | 
| 39 |  | eleq1 2829 | . . . . . . 7
⊢ (𝑦 = 𝑧 → (𝑦 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} ↔ 𝑧 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)})) | 
| 40 | 39, 20 | imbi12d 344 | . . . . . 6
⊢ (𝑦 = 𝑧 → ((𝑦 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} → 𝑥 = 𝐶) ↔ (𝑧 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} → 𝑥 = ⦋𝑧 / 𝑦⦌𝐶))) | 
| 41 | 36, 38, 40 | cbvalv1 2343 | . . . . 5
⊢
(∀𝑦(𝑦 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} → 𝑥 = 𝐶) ↔ ∀𝑧(𝑧 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} → 𝑥 = ⦋𝑧 / 𝑦⦌𝐶)) | 
| 42 | 3 | imbi1i 349 | . . . . . . . 8
⊢ ((𝑦 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} → 𝑥 = 𝐶) ↔ ((𝑦 ∈ 𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝜑)) → 𝑥 = 𝐶)) | 
| 43 |  | impexp 450 | . . . . . . . 8
⊢ (((𝑦 ∈ 𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝜑)) → 𝑥 = 𝐶) ↔ (𝑦 ∈ 𝐵 → ((𝐶 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝐶))) | 
| 44 | 42, 43 | bitri 275 | . . . . . . 7
⊢ ((𝑦 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} → 𝑥 = 𝐶) ↔ (𝑦 ∈ 𝐵 → ((𝐶 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝐶))) | 
| 45 | 44 | albii 1819 | . . . . . 6
⊢
(∀𝑦(𝑦 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} → 𝑥 = 𝐶) ↔ ∀𝑦(𝑦 ∈ 𝐵 → ((𝐶 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝐶))) | 
| 46 |  | df-ral 3062 | . . . . . 6
⊢
(∀𝑦 ∈
𝐵 ((𝐶 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝐶) ↔ ∀𝑦(𝑦 ∈ 𝐵 → ((𝐶 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝐶))) | 
| 47 | 45, 46 | bitr4i 278 | . . . . 5
⊢
(∀𝑦(𝑦 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} → 𝑥 = 𝐶) ↔ ∀𝑦 ∈ 𝐵 ((𝐶 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝐶)) | 
| 48 | 35, 41, 47 | 3bitr2i 299 | . . . 4
⊢
(∀𝑧 ∈
{𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)}𝑥 = ⦋𝑧 / 𝑦⦌𝐶 ↔ ∀𝑦 ∈ 𝐵 ((𝐶 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝐶)) | 
| 49 | 48 | eubii 2585 | . . 3
⊢
(∃!𝑥∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)}𝑥 = ⦋𝑧 / 𝑦⦌𝐶 ↔ ∃!𝑥∀𝑦 ∈ 𝐵 ((𝐶 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝐶)) | 
| 50 | 34, 49 | bitri 275 | . 2
⊢
(∃!𝑥∃𝑧 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)}𝑥 = ⦋𝑧 / 𝑦⦌𝐶 ↔ ∃!𝑥∀𝑦 ∈ 𝐵 ((𝐶 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝐶)) | 
| 51 | 1, 23, 50 | 3bitri 297 | 1
⊢
(∃!𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝑥 = 𝐶) ↔ ∃!𝑥∀𝑦 ∈ 𝐵 ((𝐶 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝐶)) |