Step | Hyp | Ref
| Expression |
1 | | df-reu 3073 |
. 2
⊢
(∃!𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝑥 = 𝐶) ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝑥 = 𝐶))) |
2 | | anass 469 |
. . . . . 6
⊢ (((𝑦 ∈ 𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝜑)) ∧ 𝑥 = 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ((𝐶 ∈ 𝐴 ∧ 𝜑) ∧ 𝑥 = 𝐶))) |
3 | | rabid 3309 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} ↔ (𝑦 ∈ 𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝜑))) |
4 | 3 | anbi1i 624 |
. . . . . 6
⊢ ((𝑦 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} ∧ 𝑥 = 𝐶) ↔ ((𝑦 ∈ 𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝜑)) ∧ 𝑥 = 𝐶)) |
5 | | anass 469 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝑥 = 𝐶) ↔ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝑥 = 𝐶))) |
6 | | eleq1 2828 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐶 → (𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) |
7 | 6 | anbi1d 630 |
. . . . . . . . 9
⊢ (𝑥 = 𝐶 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝐶 ∈ 𝐴 ∧ 𝜑))) |
8 | 7 | pm5.32ri 576 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ 𝑥 = 𝐶) ↔ ((𝐶 ∈ 𝐴 ∧ 𝜑) ∧ 𝑥 = 𝐶)) |
9 | 5, 8 | bitr3i 276 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝑥 = 𝐶)) ↔ ((𝐶 ∈ 𝐴 ∧ 𝜑) ∧ 𝑥 = 𝐶)) |
10 | 9 | anbi2i 623 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝑥 = 𝐶))) ↔ (𝑦 ∈ 𝐵 ∧ ((𝐶 ∈ 𝐴 ∧ 𝜑) ∧ 𝑥 = 𝐶))) |
11 | 2, 4, 10 | 3bitr4ri 304 |
. . . . 5
⊢ ((𝑦 ∈ 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝑥 = 𝐶))) ↔ (𝑦 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} ∧ 𝑥 = 𝐶)) |
12 | 11 | rexbii2 3178 |
. . . 4
⊢
(∃𝑦 ∈
𝐵 (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝑥 = 𝐶)) ↔ ∃𝑦 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)}𝑥 = 𝐶) |
13 | | r19.42v 3279 |
. . . 4
⊢
(∃𝑦 ∈
𝐵 (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ 𝑥 = 𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝑥 = 𝐶))) |
14 | | nfrab1 3316 |
. . . . 5
⊢
Ⅎ𝑦{𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} |
15 | | nfcv 2909 |
. . . . 5
⊢
Ⅎ𝑧{𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} |
16 | | nfv 1921 |
. . . . 5
⊢
Ⅎ𝑧 𝑥 = 𝐶 |
17 | | nfcsb1v 3862 |
. . . . . 6
⊢
Ⅎ𝑦⦋𝑧 / 𝑦⦌𝐶 |
18 | 17 | nfeq2 2926 |
. . . . 5
⊢
Ⅎ𝑦 𝑥 = ⦋𝑧 / 𝑦⦌𝐶 |
19 | | csbeq1a 3851 |
. . . . . 6
⊢ (𝑦 = 𝑧 → 𝐶 = ⦋𝑧 / 𝑦⦌𝐶) |
20 | 19 | eqeq2d 2751 |
. . . . 5
⊢ (𝑦 = 𝑧 → (𝑥 = 𝐶 ↔ 𝑥 = ⦋𝑧 / 𝑦⦌𝐶)) |
21 | 14, 15, 16, 18, 20 | cbvrexfw 3369 |
. . . 4
⊢
(∃𝑦 ∈
{𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)}𝑥 = 𝐶 ↔ ∃𝑧 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)}𝑥 = ⦋𝑧 / 𝑦⦌𝐶) |
22 | 12, 13, 21 | 3bitr3i 301 |
. . 3
⊢ ((𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝑥 = 𝐶)) ↔ ∃𝑧 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)}𝑥 = ⦋𝑧 / 𝑦⦌𝐶) |
23 | 22 | eubii 2587 |
. 2
⊢
(∃!𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝑥 = 𝐶)) ↔ ∃!𝑥∃𝑧 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)}𝑥 = ⦋𝑧 / 𝑦⦌𝐶) |
24 | | elex 3449 |
. . . . . . . 8
⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ V) |
25 | 24 | ad2antrl 725 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝜑)) → 𝐶 ∈ V) |
26 | 3, 25 | sylbi 216 |
. . . . . 6
⊢ (𝑦 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} → 𝐶 ∈ V) |
27 | 26 | rgen 3076 |
. . . . 5
⊢
∀𝑦 ∈
{𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)}𝐶 ∈ V |
28 | | nfv 1921 |
. . . . . 6
⊢
Ⅎ𝑧 𝐶 ∈ V |
29 | 17 | nfel1 2925 |
. . . . . 6
⊢
Ⅎ𝑦⦋𝑧 / 𝑦⦌𝐶 ∈ V |
30 | 19 | eleq1d 2825 |
. . . . . 6
⊢ (𝑦 = 𝑧 → (𝐶 ∈ V ↔ ⦋𝑧 / 𝑦⦌𝐶 ∈ V)) |
31 | 14, 15, 28, 29, 30 | cbvralfw 3367 |
. . . . 5
⊢
(∀𝑦 ∈
{𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)}𝐶 ∈ V ↔ ∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)}⦋𝑧 / 𝑦⦌𝐶 ∈ V) |
32 | 27, 31 | mpbi 229 |
. . . 4
⊢
∀𝑧 ∈
{𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)}⦋𝑧 / 𝑦⦌𝐶 ∈ V |
33 | | reusv2lem3 5327 |
. . . 4
⊢
(∀𝑧 ∈
{𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)}⦋𝑧 / 𝑦⦌𝐶 ∈ V → (∃!𝑥∃𝑧 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)}𝑥 = ⦋𝑧 / 𝑦⦌𝐶 ↔ ∃!𝑥∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)}𝑥 = ⦋𝑧 / 𝑦⦌𝐶)) |
34 | 32, 33 | ax-mp 5 |
. . 3
⊢
(∃!𝑥∃𝑧 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)}𝑥 = ⦋𝑧 / 𝑦⦌𝐶 ↔ ∃!𝑥∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)}𝑥 = ⦋𝑧 / 𝑦⦌𝐶) |
35 | | df-ral 3071 |
. . . . 5
⊢
(∀𝑧 ∈
{𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)}𝑥 = ⦋𝑧 / 𝑦⦌𝐶 ↔ ∀𝑧(𝑧 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} → 𝑥 = ⦋𝑧 / 𝑦⦌𝐶)) |
36 | | nfv 1921 |
. . . . . 6
⊢
Ⅎ𝑧(𝑦 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} → 𝑥 = 𝐶) |
37 | 14 | nfcri 2896 |
. . . . . . 7
⊢
Ⅎ𝑦 𝑧 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} |
38 | 37, 18 | nfim 1903 |
. . . . . 6
⊢
Ⅎ𝑦(𝑧 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} → 𝑥 = ⦋𝑧 / 𝑦⦌𝐶) |
39 | | eleq1 2828 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → (𝑦 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} ↔ 𝑧 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)})) |
40 | 39, 20 | imbi12d 345 |
. . . . . 6
⊢ (𝑦 = 𝑧 → ((𝑦 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} → 𝑥 = 𝐶) ↔ (𝑧 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} → 𝑥 = ⦋𝑧 / 𝑦⦌𝐶))) |
41 | 36, 38, 40 | cbvalv1 2342 |
. . . . 5
⊢
(∀𝑦(𝑦 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} → 𝑥 = 𝐶) ↔ ∀𝑧(𝑧 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} → 𝑥 = ⦋𝑧 / 𝑦⦌𝐶)) |
42 | 3 | imbi1i 350 |
. . . . . . . 8
⊢ ((𝑦 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} → 𝑥 = 𝐶) ↔ ((𝑦 ∈ 𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝜑)) → 𝑥 = 𝐶)) |
43 | | impexp 451 |
. . . . . . . 8
⊢ (((𝑦 ∈ 𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝜑)) → 𝑥 = 𝐶) ↔ (𝑦 ∈ 𝐵 → ((𝐶 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝐶))) |
44 | 42, 43 | bitri 274 |
. . . . . . 7
⊢ ((𝑦 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} → 𝑥 = 𝐶) ↔ (𝑦 ∈ 𝐵 → ((𝐶 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝐶))) |
45 | 44 | albii 1826 |
. . . . . 6
⊢
(∀𝑦(𝑦 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} → 𝑥 = 𝐶) ↔ ∀𝑦(𝑦 ∈ 𝐵 → ((𝐶 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝐶))) |
46 | | df-ral 3071 |
. . . . . 6
⊢
(∀𝑦 ∈
𝐵 ((𝐶 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝐶) ↔ ∀𝑦(𝑦 ∈ 𝐵 → ((𝐶 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝐶))) |
47 | 45, 46 | bitr4i 277 |
. . . . 5
⊢
(∀𝑦(𝑦 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)} → 𝑥 = 𝐶) ↔ ∀𝑦 ∈ 𝐵 ((𝐶 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝐶)) |
48 | 35, 41, 47 | 3bitr2i 299 |
. . . 4
⊢
(∀𝑧 ∈
{𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)}𝑥 = ⦋𝑧 / 𝑦⦌𝐶 ↔ ∀𝑦 ∈ 𝐵 ((𝐶 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝐶)) |
49 | 48 | eubii 2587 |
. . 3
⊢
(∃!𝑥∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)}𝑥 = ⦋𝑧 / 𝑦⦌𝐶 ↔ ∃!𝑥∀𝑦 ∈ 𝐵 ((𝐶 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝐶)) |
50 | 34, 49 | bitri 274 |
. 2
⊢
(∃!𝑥∃𝑧 ∈ {𝑦 ∈ 𝐵 ∣ (𝐶 ∈ 𝐴 ∧ 𝜑)}𝑥 = ⦋𝑧 / 𝑦⦌𝐶 ↔ ∃!𝑥∀𝑦 ∈ 𝐵 ((𝐶 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝐶)) |
51 | 1, 23, 50 | 3bitri 297 |
1
⊢
(∃!𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 (𝜑 ∧ 𝑥 = 𝐶) ↔ ∃!𝑥∀𝑦 ∈ 𝐵 ((𝐶 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝐶)) |