MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnwof Structured version   Visualization version   GIF version

Theorem nnwof 12904
Description: Well-ordering principle: any nonempty set of positive integers has a least element. This version allows 𝑥 and 𝑦 to be present in 𝐴 as long as they are effectively not free. (Contributed by NM, 17-Aug-2001.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nnwof.1 𝑥𝐴
nnwof.2 𝑦𝐴
Assertion
Ref Expression
nnwof ((𝐴 ⊆ ℕ ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem nnwof
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnwo 12903 . 2 ((𝐴 ⊆ ℕ ∧ 𝐴 ≠ ∅) → ∃𝑤𝐴𝑣𝐴 𝑤𝑣)
2 nfcv 2901 . . 3 𝑤𝐴
3 nnwof.1 . . 3 𝑥𝐴
4 nfv 1915 . . . 4 𝑥 𝑤𝑣
53, 4nfralw 3306 . . 3 𝑥𝑣𝐴 𝑤𝑣
6 nfv 1915 . . 3 𝑤𝑦𝐴 𝑥𝑦
7 breq1 5152 . . . . 5 (𝑤 = 𝑥 → (𝑤𝑣𝑥𝑣))
87ralbidv 3175 . . . 4 (𝑤 = 𝑥 → (∀𝑣𝐴 𝑤𝑣 ↔ ∀𝑣𝐴 𝑥𝑣))
9 nfcv 2901 . . . . 5 𝑣𝐴
10 nnwof.2 . . . . 5 𝑦𝐴
11 nfv 1915 . . . . 5 𝑦 𝑥𝑣
12 nfv 1915 . . . . 5 𝑣 𝑥𝑦
13 breq2 5153 . . . . 5 (𝑣 = 𝑦 → (𝑥𝑣𝑥𝑦))
149, 10, 11, 12, 13cbvralfw 3299 . . . 4 (∀𝑣𝐴 𝑥𝑣 ↔ ∀𝑦𝐴 𝑥𝑦)
158, 14bitrdi 286 . . 3 (𝑤 = 𝑥 → (∀𝑣𝐴 𝑤𝑣 ↔ ∀𝑦𝐴 𝑥𝑦))
162, 3, 5, 6, 15cbvrexfw 3300 . 2 (∃𝑤𝐴𝑣𝐴 𝑤𝑣 ↔ ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
171, 16sylib 217 1 ((𝐴 ⊆ ℕ ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wnfc 2881  wne 2938  wral 3059  wrex 3068  wss 3949  c0 4323   class class class wbr 5149  cle 11255  cn 12218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7860  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-pnf 11256  df-mnf 11257  df-xr 11258  df-ltxr 11259  df-le 11260  df-sub 11452  df-neg 11453  df-nn 12219  df-n0 12479  df-z 12565  df-uz 12829
This theorem is referenced by:  nnwos  12905
  Copyright terms: Public domain W3C validator