MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnwof Structured version   Visualization version   GIF version

Theorem nnwof 12313
Description: Well-ordering principle: any nonempty set of positive integers has a least element. This version allows 𝑥 and 𝑦 to be present in 𝐴 as long as they are effectively not free. (Contributed by NM, 17-Aug-2001.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nnwof.1 𝑥𝐴
nnwof.2 𝑦𝐴
Assertion
Ref Expression
nnwof ((𝐴 ⊆ ℕ ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem nnwof
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnwo 12312 . 2 ((𝐴 ⊆ ℕ ∧ 𝐴 ≠ ∅) → ∃𝑤𝐴𝑣𝐴 𝑤𝑣)
2 nfcv 2982 . . 3 𝑤𝐴
3 nnwof.1 . . 3 𝑥𝐴
4 nfv 1916 . . . 4 𝑥 𝑤𝑣
53, 4nfralw 3219 . . 3 𝑥𝑣𝐴 𝑤𝑣
6 nfv 1916 . . 3 𝑤𝑦𝐴 𝑥𝑦
7 breq1 5056 . . . . 5 (𝑤 = 𝑥 → (𝑤𝑣𝑥𝑣))
87ralbidv 3192 . . . 4 (𝑤 = 𝑥 → (∀𝑣𝐴 𝑤𝑣 ↔ ∀𝑣𝐴 𝑥𝑣))
9 nfcv 2982 . . . . 5 𝑣𝐴
10 nnwof.2 . . . . 5 𝑦𝐴
11 nfv 1916 . . . . 5 𝑦 𝑥𝑣
12 nfv 1916 . . . . 5 𝑣 𝑥𝑦
13 breq2 5057 . . . . 5 (𝑣 = 𝑦 → (𝑥𝑣𝑥𝑦))
149, 10, 11, 12, 13cbvralfw 3420 . . . 4 (∀𝑣𝐴 𝑥𝑣 ↔ ∀𝑦𝐴 𝑥𝑦)
158, 14syl6bb 290 . . 3 (𝑤 = 𝑥 → (∀𝑣𝐴 𝑤𝑣 ↔ ∀𝑦𝐴 𝑥𝑦))
162, 3, 5, 6, 15cbvrexfw 3422 . 2 (∃𝑤𝐴𝑣𝐴 𝑤𝑣 ↔ ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
171, 16sylib 221 1 ((𝐴 ⊆ ℕ ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wnfc 2962  wne 3014  wral 3133  wrex 3134  wss 3919  c0 4276   class class class wbr 5053  cle 10676  cn 11636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6137  df-ord 6183  df-on 6184  df-lim 6185  df-suc 6186  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7577  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-er 8287  df-en 8508  df-dom 8509  df-sdom 8510  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11637  df-n0 11897  df-z 11981  df-uz 12243
This theorem is referenced by:  nnwos  12314
  Copyright terms: Public domain W3C validator