Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem14 Structured version   Visualization version   GIF version

Theorem stoweidlem14 45970
Description: There exists a 𝑘 as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90: 𝑘 is an integer and 1 < k * δ < 2. 𝐷 is used to represent δ in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem14.1 𝐴 = {𝑗 ∈ ℕ ∣ (1 / 𝐷) < 𝑗}
stoweidlem14.2 (𝜑𝐷 ∈ ℝ+)
stoweidlem14.3 (𝜑𝐷 < 1)
Assertion
Ref Expression
stoweidlem14 (𝜑 → ∃𝑘 ∈ ℕ (1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1))
Distinct variable groups:   𝑗,𝑘,𝐷   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑗)   𝐴(𝑗)

Proof of Theorem stoweidlem14
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 stoweidlem14.1 . . . . . 6 𝐴 = {𝑗 ∈ ℕ ∣ (1 / 𝐷) < 𝑗}
2 ssrab2 4090 . . . . . . 7 {𝑗 ∈ ℕ ∣ (1 / 𝐷) < 𝑗} ⊆ ℕ
32a1i 11 . . . . . 6 (𝜑 → {𝑗 ∈ ℕ ∣ (1 / 𝐷) < 𝑗} ⊆ ℕ)
41, 3eqsstrid 4044 . . . . 5 (𝜑𝐴 ⊆ ℕ)
5 stoweidlem14.2 . . . . . . 7 (𝜑𝐷 ∈ ℝ+)
65rprecred 13086 . . . . . 6 (𝜑 → (1 / 𝐷) ∈ ℝ)
7 arch 12521 . . . . . 6 ((1 / 𝐷) ∈ ℝ → ∃𝑘 ∈ ℕ (1 / 𝐷) < 𝑘)
8 breq2 5152 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((1 / 𝐷) < 𝑗 ↔ (1 / 𝐷) < 𝑘))
98elrab 3695 . . . . . . . . . 10 (𝑘 ∈ {𝑗 ∈ ℕ ∣ (1 / 𝐷) < 𝑗} ↔ (𝑘 ∈ ℕ ∧ (1 / 𝐷) < 𝑘))
109biimpri 228 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (1 / 𝐷) < 𝑘) → 𝑘 ∈ {𝑗 ∈ ℕ ∣ (1 / 𝐷) < 𝑗})
1110, 1eleqtrrdi 2850 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ (1 / 𝐷) < 𝑘) → 𝑘𝐴)
12 simpr 484 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ (1 / 𝐷) < 𝑘) → (1 / 𝐷) < 𝑘)
1311, 12jca 511 . . . . . . 7 ((𝑘 ∈ ℕ ∧ (1 / 𝐷) < 𝑘) → (𝑘𝐴 ∧ (1 / 𝐷) < 𝑘))
1413reximi2 3077 . . . . . 6 (∃𝑘 ∈ ℕ (1 / 𝐷) < 𝑘 → ∃𝑘𝐴 (1 / 𝐷) < 𝑘)
15 rexn0 4517 . . . . . 6 (∃𝑘𝐴 (1 / 𝐷) < 𝑘𝐴 ≠ ∅)
166, 7, 14, 154syl 19 . . . . 5 (𝜑𝐴 ≠ ∅)
17 nnwo 12953 . . . . 5 ((𝐴 ⊆ ℕ ∧ 𝐴 ≠ ∅) → ∃𝑘𝐴𝑧𝐴 𝑘𝑧)
184, 16, 17syl2anc 584 . . . 4 (𝜑 → ∃𝑘𝐴𝑧𝐴 𝑘𝑧)
19 df-rex 3069 . . . 4 (∃𝑘𝐴𝑧𝐴 𝑘𝑧 ↔ ∃𝑘(𝑘𝐴 ∧ ∀𝑧𝐴 𝑘𝑧))
2018, 19sylib 218 . . 3 (𝜑 → ∃𝑘(𝑘𝐴 ∧ ∀𝑧𝐴 𝑘𝑧))
218, 1elrab2 3698 . . . . . . . 8 (𝑘𝐴 ↔ (𝑘 ∈ ℕ ∧ (1 / 𝐷) < 𝑘))
2221simplbi 497 . . . . . . 7 (𝑘𝐴𝑘 ∈ ℕ)
2322ad2antrl 728 . . . . . 6 ((𝜑 ∧ (𝑘𝐴 ∧ ∀𝑧𝐴 𝑘𝑧)) → 𝑘 ∈ ℕ)
24 simpl 482 . . . . . . 7 ((𝜑 ∧ (𝑘𝐴 ∧ ∀𝑧𝐴 𝑘𝑧)) → 𝜑)
25 simprl 771 . . . . . . 7 ((𝜑 ∧ (𝑘𝐴 ∧ ∀𝑧𝐴 𝑘𝑧)) → 𝑘𝐴)
26 simprr 773 . . . . . . . 8 ((𝜑 ∧ (𝑘𝐴 ∧ ∀𝑧𝐴 𝑘𝑧)) → ∀𝑧𝐴 𝑘𝑧)
27 nfcv 2903 . . . . . . . . 9 𝑧𝐴
28 nfrab1 3454 . . . . . . . . . 10 𝑗{𝑗 ∈ ℕ ∣ (1 / 𝐷) < 𝑗}
291, 28nfcxfr 2901 . . . . . . . . 9 𝑗𝐴
30 nfv 1912 . . . . . . . . 9 𝑗 𝑘𝑧
31 nfv 1912 . . . . . . . . 9 𝑧 𝑘𝑗
32 breq2 5152 . . . . . . . . 9 (𝑧 = 𝑗 → (𝑘𝑧𝑘𝑗))
3327, 29, 30, 31, 32cbvralfw 3302 . . . . . . . 8 (∀𝑧𝐴 𝑘𝑧 ↔ ∀𝑗𝐴 𝑘𝑗)
3426, 33sylib 218 . . . . . . 7 ((𝜑 ∧ (𝑘𝐴 ∧ ∀𝑧𝐴 𝑘𝑧)) → ∀𝑗𝐴 𝑘𝑗)
3521simprbi 496 . . . . . . . . 9 (𝑘𝐴 → (1 / 𝐷) < 𝑘)
3635ad2antrl 728 . . . . . . . 8 ((𝜑 ∧ (𝑘𝐴 ∧ ∀𝑗𝐴 𝑘𝑗)) → (1 / 𝐷) < 𝑘)
3722ad2antrl 728 . . . . . . . . 9 ((𝜑 ∧ (𝑘𝐴 ∧ ∀𝑗𝐴 𝑘𝑗)) → 𝑘 ∈ ℕ)
38 1red 11260 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 1 ∈ ℝ)
39 nnre 12271 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
4039adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
415rpregt0d 13081 . . . . . . . . . . 11 (𝜑 → (𝐷 ∈ ℝ ∧ 0 < 𝐷))
4241adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝐷 ∈ ℝ ∧ 0 < 𝐷))
43 ltdivmul2 12143 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷)) → ((1 / 𝐷) < 𝑘 ↔ 1 < (𝑘 · 𝐷)))
4438, 40, 42, 43syl3anc 1370 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((1 / 𝐷) < 𝑘 ↔ 1 < (𝑘 · 𝐷)))
4537, 44syldan 591 . . . . . . . 8 ((𝜑 ∧ (𝑘𝐴 ∧ ∀𝑗𝐴 𝑘𝑗)) → ((1 / 𝐷) < 𝑘 ↔ 1 < (𝑘 · 𝐷)))
4636, 45mpbid 232 . . . . . . 7 ((𝜑 ∧ (𝑘𝐴 ∧ ∀𝑗𝐴 𝑘𝑗)) → 1 < (𝑘 · 𝐷))
4724, 25, 34, 46syl12anc 837 . . . . . 6 ((𝜑 ∧ (𝑘𝐴 ∧ ∀𝑧𝐴 𝑘𝑧)) → 1 < (𝑘 · 𝐷))
48 oveq1 7438 . . . . . . . . . . . 12 (𝑘 = 1 → (𝑘 · 𝐷) = (1 · 𝐷))
4948adantl 481 . . . . . . . . . . 11 ((𝜑𝑘 = 1) → (𝑘 · 𝐷) = (1 · 𝐷))
505rpcnd 13077 . . . . . . . . . . . . 13 (𝜑𝐷 ∈ ℂ)
5150adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘 = 1) → 𝐷 ∈ ℂ)
5251mullidd 11277 . . . . . . . . . . 11 ((𝜑𝑘 = 1) → (1 · 𝐷) = 𝐷)
5349, 52eqtrd 2775 . . . . . . . . . 10 ((𝜑𝑘 = 1) → (𝑘 · 𝐷) = 𝐷)
5453oveq1d 7446 . . . . . . . . 9 ((𝜑𝑘 = 1) → ((𝑘 · 𝐷) / 2) = (𝐷 / 2))
555rpred 13075 . . . . . . . . . . . 12 (𝜑𝐷 ∈ ℝ)
5655rehalfcld 12511 . . . . . . . . . . 11 (𝜑 → (𝐷 / 2) ∈ ℝ)
57 halfre 12478 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
5857a1i 11 . . . . . . . . . . 11 (𝜑 → (1 / 2) ∈ ℝ)
59 1red 11260 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℝ)
60 stoweidlem14.3 . . . . . . . . . . . 12 (𝜑𝐷 < 1)
61 2re 12338 . . . . . . . . . . . . . 14 2 ∈ ℝ
6261a1i 11 . . . . . . . . . . . . 13 (𝜑 → 2 ∈ ℝ)
63 2pos 12367 . . . . . . . . . . . . . 14 0 < 2
6463a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 < 2)
65 ltdiv1 12130 . . . . . . . . . . . . 13 ((𝐷 ∈ ℝ ∧ 1 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐷 < 1 ↔ (𝐷 / 2) < (1 / 2)))
6655, 59, 62, 64, 65syl112anc 1373 . . . . . . . . . . . 12 (𝜑 → (𝐷 < 1 ↔ (𝐷 / 2) < (1 / 2)))
6760, 66mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝐷 / 2) < (1 / 2))
68 halflt1 12482 . . . . . . . . . . . 12 (1 / 2) < 1
6968a1i 11 . . . . . . . . . . 11 (𝜑 → (1 / 2) < 1)
7056, 58, 59, 67, 69lttrd 11420 . . . . . . . . . 10 (𝜑 → (𝐷 / 2) < 1)
7170adantr 480 . . . . . . . . 9 ((𝜑𝑘 = 1) → (𝐷 / 2) < 1)
7254, 71eqbrtrd 5170 . . . . . . . 8 ((𝜑𝑘 = 1) → ((𝑘 · 𝐷) / 2) < 1)
7372adantlr 715 . . . . . . 7 (((𝜑 ∧ (𝑘𝐴 ∧ ∀𝑧𝐴 𝑘𝑧)) ∧ 𝑘 = 1) → ((𝑘 · 𝐷) / 2) < 1)
74 simpll 767 . . . . . . . 8 (((𝜑 ∧ (𝑘𝐴 ∧ ∀𝑧𝐴 𝑘𝑧)) ∧ ¬ 𝑘 = 1) → 𝜑)
75 simplrl 777 . . . . . . . . . 10 (((𝜑 ∧ (𝑘𝐴 ∧ ∀𝑧𝐴 𝑘𝑧)) ∧ ¬ 𝑘 = 1) → 𝑘𝐴)
7675, 22syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑘𝐴 ∧ ∀𝑧𝐴 𝑘𝑧)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ ℕ)
77 neqne 2946 . . . . . . . . . 10 𝑘 = 1 → 𝑘 ≠ 1)
7877adantl 481 . . . . . . . . 9 (((𝜑 ∧ (𝑘𝐴 ∧ ∀𝑧𝐴 𝑘𝑧)) ∧ ¬ 𝑘 = 1) → 𝑘 ≠ 1)
79 eluz2b3 12962 . . . . . . . . 9 (𝑘 ∈ (ℤ‘2) ↔ (𝑘 ∈ ℕ ∧ 𝑘 ≠ 1))
8076, 78, 79sylanbrc 583 . . . . . . . 8 (((𝜑 ∧ (𝑘𝐴 ∧ ∀𝑧𝐴 𝑘𝑧)) ∧ ¬ 𝑘 = 1) → 𝑘 ∈ (ℤ‘2))
81 peano2rem 11574 . . . . . . . . . 10 (𝑘 ∈ ℝ → (𝑘 − 1) ∈ ℝ)
8275, 22, 39, 814syl 19 . . . . . . . . 9 (((𝜑 ∧ (𝑘𝐴 ∧ ∀𝑧𝐴 𝑘𝑧)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ ℝ)
8355ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑘𝐴 ∧ ∀𝑧𝐴 𝑘𝑧)) ∧ ¬ 𝑘 = 1) → 𝐷 ∈ ℝ)
845rpne0d 13080 . . . . . . . . . . 11 (𝜑𝐷 ≠ 0)
8584ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑘𝐴 ∧ ∀𝑧𝐴 𝑘𝑧)) ∧ ¬ 𝑘 = 1) → 𝐷 ≠ 0)
8683, 85rereccld 12092 . . . . . . . . 9 (((𝜑 ∧ (𝑘𝐴 ∧ ∀𝑧𝐴 𝑘𝑧)) ∧ ¬ 𝑘 = 1) → (1 / 𝐷) ∈ ℝ)
87 1zzd 12646 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘𝐴 ∧ ∀𝑧𝐴 𝑘𝑧)) ∧ ¬ 𝑘 = 1) → 1 ∈ ℤ)
88 df-2 12327 . . . . . . . . . . . . . . 15 2 = (1 + 1)
8988fveq2i 6910 . . . . . . . . . . . . . 14 (ℤ‘2) = (ℤ‘(1 + 1))
9089eleq2i 2831 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ‘2) ↔ 𝑘 ∈ (ℤ‘(1 + 1)))
91 eluzsub 12906 . . . . . . . . . . . . 13 ((1 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑘 ∈ (ℤ‘(1 + 1))) → (𝑘 − 1) ∈ (ℤ‘1))
9290, 91syl3an3b 1404 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑘 ∈ (ℤ‘2)) → (𝑘 − 1) ∈ (ℤ‘1))
93 nnuz 12919 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
9492, 93eleqtrrdi 2850 . . . . . . . . . . 11 ((1 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑘 ∈ (ℤ‘2)) → (𝑘 − 1) ∈ ℕ)
9587, 87, 80, 94syl3anc 1370 . . . . . . . . . 10 (((𝜑 ∧ (𝑘𝐴 ∧ ∀𝑧𝐴 𝑘𝑧)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ∈ ℕ)
9622, 39syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘𝐴𝑘 ∈ ℝ)
9796adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝑘 − 1) ∈ 𝐴𝑘𝐴) → 𝑘 ∈ ℝ)
9897, 81syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑘 − 1) ∈ 𝐴𝑘𝐴) → (𝑘 − 1) ∈ ℝ)
99 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑘 − 1) ∈ ℝ ∧ 𝑘 ∈ ℝ) → 𝑘 ∈ ℝ)
10099ltm1d 12198 . . . . . . . . . . . . . . . . . . . . 21 (((𝑘 − 1) ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑘 − 1) < 𝑘)
101 ltnle 11338 . . . . . . . . . . . . . . . . . . . . 21 (((𝑘 − 1) ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((𝑘 − 1) < 𝑘 ↔ ¬ 𝑘 ≤ (𝑘 − 1)))
102100, 101mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (((𝑘 − 1) ∈ ℝ ∧ 𝑘 ∈ ℝ) → ¬ 𝑘 ≤ (𝑘 − 1))
10398, 97, 102syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝑘 − 1) ∈ 𝐴𝑘𝐴) → ¬ 𝑘 ≤ (𝑘 − 1))
104 breq2 5152 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = (𝑘 − 1) → (𝑘𝑧𝑘 ≤ (𝑘 − 1)))
105104notbid 318 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝑘 − 1) → (¬ 𝑘𝑧 ↔ ¬ 𝑘 ≤ (𝑘 − 1)))
106105rspcev 3622 . . . . . . . . . . . . . . . . . . 19 (((𝑘 − 1) ∈ 𝐴 ∧ ¬ 𝑘 ≤ (𝑘 − 1)) → ∃𝑧𝐴 ¬ 𝑘𝑧)
107103, 106syldan 591 . . . . . . . . . . . . . . . . . 18 (((𝑘 − 1) ∈ 𝐴𝑘𝐴) → ∃𝑧𝐴 ¬ 𝑘𝑧)
108 rexnal 3098 . . . . . . . . . . . . . . . . . 18 (∃𝑧𝐴 ¬ 𝑘𝑧 ↔ ¬ ∀𝑧𝐴 𝑘𝑧)
109107, 108sylib 218 . . . . . . . . . . . . . . . . 17 (((𝑘 − 1) ∈ 𝐴𝑘𝐴) → ¬ ∀𝑧𝐴 𝑘𝑧)
110109ex 412 . . . . . . . . . . . . . . . 16 ((𝑘 − 1) ∈ 𝐴 → (𝑘𝐴 → ¬ ∀𝑧𝐴 𝑘𝑧))
111 imnan 399 . . . . . . . . . . . . . . . 16 ((𝑘𝐴 → ¬ ∀𝑧𝐴 𝑘𝑧) ↔ ¬ (𝑘𝐴 ∧ ∀𝑧𝐴 𝑘𝑧))
112110, 111sylib 218 . . . . . . . . . . . . . . 15 ((𝑘 − 1) ∈ 𝐴 → ¬ (𝑘𝐴 ∧ ∀𝑧𝐴 𝑘𝑧))
113112con2i 139 . . . . . . . . . . . . . 14 ((𝑘𝐴 ∧ ∀𝑧𝐴 𝑘𝑧) → ¬ (𝑘 − 1) ∈ 𝐴)
114113ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘𝐴 ∧ ∀𝑧𝐴 𝑘𝑧)) ∧ ¬ 𝑘 = 1) → ¬ (𝑘 − 1) ∈ 𝐴)
115 breq2 5152 . . . . . . . . . . . . . 14 (𝑗 = (𝑘 − 1) → ((1 / 𝐷) < 𝑗 ↔ (1 / 𝐷) < (𝑘 − 1)))
116115, 1elrab2 3698 . . . . . . . . . . . . 13 ((𝑘 − 1) ∈ 𝐴 ↔ ((𝑘 − 1) ∈ ℕ ∧ (1 / 𝐷) < (𝑘 − 1)))
117114, 116sylnib 328 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘𝐴 ∧ ∀𝑧𝐴 𝑘𝑧)) ∧ ¬ 𝑘 = 1) → ¬ ((𝑘 − 1) ∈ ℕ ∧ (1 / 𝐷) < (𝑘 − 1)))
118 ianor 983 . . . . . . . . . . . 12 (¬ ((𝑘 − 1) ∈ ℕ ∧ (1 / 𝐷) < (𝑘 − 1)) ↔ (¬ (𝑘 − 1) ∈ ℕ ∨ ¬ (1 / 𝐷) < (𝑘 − 1)))
119117, 118sylib 218 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘𝐴 ∧ ∀𝑧𝐴 𝑘𝑧)) ∧ ¬ 𝑘 = 1) → (¬ (𝑘 − 1) ∈ ℕ ∨ ¬ (1 / 𝐷) < (𝑘 − 1)))
120 imor 853 . . . . . . . . . . 11 (((𝑘 − 1) ∈ ℕ → ¬ (1 / 𝐷) < (𝑘 − 1)) ↔ (¬ (𝑘 − 1) ∈ ℕ ∨ ¬ (1 / 𝐷) < (𝑘 − 1)))
121119, 120sylibr 234 . . . . . . . . . 10 (((𝜑 ∧ (𝑘𝐴 ∧ ∀𝑧𝐴 𝑘𝑧)) ∧ ¬ 𝑘 = 1) → ((𝑘 − 1) ∈ ℕ → ¬ (1 / 𝐷) < (𝑘 − 1)))
12295, 121mpd 15 . . . . . . . . 9 (((𝜑 ∧ (𝑘𝐴 ∧ ∀𝑧𝐴 𝑘𝑧)) ∧ ¬ 𝑘 = 1) → ¬ (1 / 𝐷) < (𝑘 − 1))
12382, 86, 122nltled 11409 . . . . . . . 8 (((𝜑 ∧ (𝑘𝐴 ∧ ∀𝑧𝐴 𝑘𝑧)) ∧ ¬ 𝑘 = 1) → (𝑘 − 1) ≤ (1 / 𝐷))
124 eluzelre 12887 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ‘2) → 𝑘 ∈ ℝ)
125124adantl 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑘 ∈ ℝ)
12655adantr 480 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝐷 ∈ ℝ)
127125, 126remulcld 11289 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑘 · 𝐷) ∈ ℝ)
128127rehalfcld 12511 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘2)) → ((𝑘 · 𝐷) / 2) ∈ ℝ)
1291283adant3 1131 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘2) ∧ (𝑘 − 1) ≤ (1 / 𝐷)) → ((𝑘 · 𝐷) / 2) ∈ ℝ)
13059, 55readdcld 11288 . . . . . . . . . . . 12 (𝜑 → (1 + 𝐷) ∈ ℝ)
131130adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2)) → (1 + 𝐷) ∈ ℝ)
132131rehalfcld 12511 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘2)) → ((1 + 𝐷) / 2) ∈ ℝ)
1331323adant3 1131 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘2) ∧ (𝑘 − 1) ≤ (1 / 𝐷)) → ((1 + 𝐷) / 2) ∈ ℝ)
134 1red 11260 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘2) ∧ (𝑘 − 1) ≤ (1 / 𝐷)) → 1 ∈ ℝ)
135 eluzelcn 12888 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ‘2) → 𝑘 ∈ ℂ)
136135adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝑘 ∈ ℂ)
13750adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘2)) → 𝐷 ∈ ℂ)
138136, 137mulcld 11279 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → (𝑘 · 𝐷) ∈ ℂ)
1391383adant3 1131 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2) ∧ (𝑘 − 1) ≤ (1 / 𝐷)) → (𝑘 · 𝐷) ∈ ℂ)
140503ad2ant1 1132 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2) ∧ (𝑘 − 1) ≤ (1 / 𝐷)) → 𝐷 ∈ ℂ)
141139, 140npcand 11622 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2) ∧ (𝑘 − 1) ≤ (1 / 𝐷)) → (((𝑘 · 𝐷) − 𝐷) + 𝐷) = (𝑘 · 𝐷))
142127, 126resubcld 11689 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2)) → ((𝑘 · 𝐷) − 𝐷) ∈ ℝ)
1431423adant3 1131 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2) ∧ (𝑘 − 1) ≤ (1 / 𝐷)) → ((𝑘 · 𝐷) − 𝐷) ∈ ℝ)
144553ad2ant1 1132 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2) ∧ (𝑘 − 1) ≤ (1 / 𝐷)) → 𝐷 ∈ ℝ)
145 simp3 1137 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘2) ∧ (𝑘 − 1) ≤ (1 / 𝐷)) → (𝑘 − 1) ≤ (1 / 𝐷))
146 1red 11260 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘2) → 1 ∈ ℝ)
147124, 146resubcld 11689 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘2) → (𝑘 − 1) ∈ ℝ)
1481473ad2ant2 1133 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘2) ∧ (𝑘 − 1) ≤ (1 / 𝐷)) → (𝑘 − 1) ∈ ℝ)
14963ad2ant1 1132 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘2) ∧ (𝑘 − 1) ≤ (1 / 𝐷)) → (1 / 𝐷) ∈ ℝ)
150413ad2ant1 1132 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘2) ∧ (𝑘 − 1) ≤ (1 / 𝐷)) → (𝐷 ∈ ℝ ∧ 0 < 𝐷))
151 lemul1 12117 . . . . . . . . . . . . . . 15 (((𝑘 − 1) ∈ ℝ ∧ (1 / 𝐷) ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷)) → ((𝑘 − 1) ≤ (1 / 𝐷) ↔ ((𝑘 − 1) · 𝐷) ≤ ((1 / 𝐷) · 𝐷)))
152148, 149, 150, 151syl3anc 1370 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘2) ∧ (𝑘 − 1) ≤ (1 / 𝐷)) → ((𝑘 − 1) ≤ (1 / 𝐷) ↔ ((𝑘 − 1) · 𝐷) ≤ ((1 / 𝐷) · 𝐷)))
153145, 152mpbid 232 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2) ∧ (𝑘 − 1) ≤ (1 / 𝐷)) → ((𝑘 − 1) · 𝐷) ≤ ((1 / 𝐷) · 𝐷))
154 1cnd 11254 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ‘2)) → 1 ∈ ℂ)
155136, 154, 137subdird 11718 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘2)) → ((𝑘 − 1) · 𝐷) = ((𝑘 · 𝐷) − (1 · 𝐷)))
156137mullidd 11277 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ‘2)) → (1 · 𝐷) = 𝐷)
157156oveq2d 7447 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘2)) → ((𝑘 · 𝐷) − (1 · 𝐷)) = ((𝑘 · 𝐷) − 𝐷))
158155, 157eqtrd 2775 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘2)) → ((𝑘 − 1) · 𝐷) = ((𝑘 · 𝐷) − 𝐷))
1591583adant3 1131 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2) ∧ (𝑘 − 1) ≤ (1 / 𝐷)) → ((𝑘 − 1) · 𝐷) = ((𝑘 · 𝐷) − 𝐷))
160 1cnd 11254 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℂ)
161160, 50, 843jca 1127 . . . . . . . . . . . . . . 15 (𝜑 → (1 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))
1621613ad2ant1 1132 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘2) ∧ (𝑘 − 1) ≤ (1 / 𝐷)) → (1 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0))
163 divcan1 11929 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0) → ((1 / 𝐷) · 𝐷) = 1)
164162, 163syl 17 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘2) ∧ (𝑘 − 1) ≤ (1 / 𝐷)) → ((1 / 𝐷) · 𝐷) = 1)
165153, 159, 1643brtr3d 5179 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘2) ∧ (𝑘 − 1) ≤ (1 / 𝐷)) → ((𝑘 · 𝐷) − 𝐷) ≤ 1)
166143, 134, 144, 165leadd1dd 11875 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2) ∧ (𝑘 − 1) ≤ (1 / 𝐷)) → (((𝑘 · 𝐷) − 𝐷) + 𝐷) ≤ (1 + 𝐷))
167141, 166eqbrtrrd 5172 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘2) ∧ (𝑘 − 1) ≤ (1 / 𝐷)) → (𝑘 · 𝐷) ≤ (1 + 𝐷))
1681273adant3 1131 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2) ∧ (𝑘 − 1) ≤ (1 / 𝐷)) → (𝑘 · 𝐷) ∈ ℝ)
1691303ad2ant1 1132 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2) ∧ (𝑘 − 1) ≤ (1 / 𝐷)) → (1 + 𝐷) ∈ ℝ)
17061, 63pm3.2i 470 . . . . . . . . . . . 12 (2 ∈ ℝ ∧ 0 < 2)
171170a1i 11 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘2) ∧ (𝑘 − 1) ≤ (1 / 𝐷)) → (2 ∈ ℝ ∧ 0 < 2))
172 lediv1 12131 . . . . . . . . . . 11 (((𝑘 · 𝐷) ∈ ℝ ∧ (1 + 𝐷) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑘 · 𝐷) ≤ (1 + 𝐷) ↔ ((𝑘 · 𝐷) / 2) ≤ ((1 + 𝐷) / 2)))
173168, 169, 171, 172syl3anc 1370 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘2) ∧ (𝑘 − 1) ≤ (1 / 𝐷)) → ((𝑘 · 𝐷) ≤ (1 + 𝐷) ↔ ((𝑘 · 𝐷) / 2) ≤ ((1 + 𝐷) / 2)))
174167, 173mpbid 232 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘2) ∧ (𝑘 − 1) ≤ (1 / 𝐷)) → ((𝑘 · 𝐷) / 2) ≤ ((1 + 𝐷) / 2))
17555, 59, 59, 60ltadd2dd 11418 . . . . . . . . . . . . 13 (𝜑 → (1 + 𝐷) < (1 + 1))
176 1p1e2 12389 . . . . . . . . . . . . 13 (1 + 1) = 2
177175, 176breqtrdi 5189 . . . . . . . . . . . 12 (𝜑 → (1 + 𝐷) < 2)
178 ltdiv1 12130 . . . . . . . . . . . . 13 (((1 + 𝐷) ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((1 + 𝐷) < 2 ↔ ((1 + 𝐷) / 2) < (2 / 2)))
179130, 62, 62, 64, 178syl112anc 1373 . . . . . . . . . . . 12 (𝜑 → ((1 + 𝐷) < 2 ↔ ((1 + 𝐷) / 2) < (2 / 2)))
180177, 179mpbid 232 . . . . . . . . . . 11 (𝜑 → ((1 + 𝐷) / 2) < (2 / 2))
181 2div2e1 12405 . . . . . . . . . . 11 (2 / 2) = 1
182180, 181breqtrdi 5189 . . . . . . . . . 10 (𝜑 → ((1 + 𝐷) / 2) < 1)
1831823ad2ant1 1132 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘2) ∧ (𝑘 − 1) ≤ (1 / 𝐷)) → ((1 + 𝐷) / 2) < 1)
184129, 133, 134, 174, 183lelttrd 11417 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘2) ∧ (𝑘 − 1) ≤ (1 / 𝐷)) → ((𝑘 · 𝐷) / 2) < 1)
18574, 80, 123, 184syl3anc 1370 . . . . . . 7 (((𝜑 ∧ (𝑘𝐴 ∧ ∀𝑧𝐴 𝑘𝑧)) ∧ ¬ 𝑘 = 1) → ((𝑘 · 𝐷) / 2) < 1)
18673, 185pm2.61dan 813 . . . . . 6 ((𝜑 ∧ (𝑘𝐴 ∧ ∀𝑧𝐴 𝑘𝑧)) → ((𝑘 · 𝐷) / 2) < 1)
18723, 47, 186jca32 515 . . . . 5 ((𝜑 ∧ (𝑘𝐴 ∧ ∀𝑧𝐴 𝑘𝑧)) → (𝑘 ∈ ℕ ∧ (1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1)))
188187ex 412 . . . 4 (𝜑 → ((𝑘𝐴 ∧ ∀𝑧𝐴 𝑘𝑧) → (𝑘 ∈ ℕ ∧ (1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1))))
189188eximdv 1915 . . 3 (𝜑 → (∃𝑘(𝑘𝐴 ∧ ∀𝑧𝐴 𝑘𝑧) → ∃𝑘(𝑘 ∈ ℕ ∧ (1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1))))
19020, 189mpd 15 . 2 (𝜑 → ∃𝑘(𝑘 ∈ ℕ ∧ (1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1)))
191 df-rex 3069 . 2 (∃𝑘 ∈ ℕ (1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1) ↔ ∃𝑘(𝑘 ∈ ℕ ∧ (1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1)))
192190, 191sylibr 234 1 (𝜑 → ∃𝑘 ∈ ℕ (1 < (𝑘 · 𝐷) ∧ ((𝑘 · 𝐷) / 2) < 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1537  wex 1776  wcel 2106  wne 2938  wral 3059  wrex 3068  {crab 3433  wss 3963  c0 4339   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294  cmin 11490   / cdiv 11918  cn 12264  2c2 12319  cz 12611  cuz 12876  +crp 13032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033
This theorem is referenced by:  stoweidlem49  46005
  Copyright terms: Public domain W3C validator