Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scottexf Structured version   Visualization version   GIF version

Theorem scottexf 36354
Description: A version of scottex 9671 with nonfree variables instead of distinct variables. (Contributed by Giovanni Mascellani, 19-Aug-2018.)
Hypotheses
Ref Expression
scottexf.1 𝑦𝐴
scottexf.2 𝑥𝐴
Assertion
Ref Expression
scottexf {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem scottexf
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scottexf.1 . . . . 5 𝑦𝐴
2 nfcv 2902 . . . . 5 𝑧𝐴
3 nfv 1913 . . . . 5 𝑧(rank‘𝑥) ⊆ (rank‘𝑦)
4 nfv 1913 . . . . 5 𝑦(rank‘𝑥) ⊆ (rank‘𝑧)
5 fveq2 6792 . . . . . 6 (𝑦 = 𝑧 → (rank‘𝑦) = (rank‘𝑧))
65sseq2d 3955 . . . . 5 (𝑦 = 𝑧 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑥) ⊆ (rank‘𝑧)))
71, 2, 3, 4, 6cbvralfw 3370 . . . 4 (∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑧𝐴 (rank‘𝑥) ⊆ (rank‘𝑧))
87rabbii 3410 . . 3 {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥𝐴 ∣ ∀𝑧𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)}
9 nfcv 2902 . . . 4 𝑤𝐴
10 scottexf.2 . . . 4 𝑥𝐴
11 nfv 1913 . . . . 5 𝑥(rank‘𝑤) ⊆ (rank‘𝑧)
1210, 11nfralw 3245 . . . 4 𝑥𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)
13 nfv 1913 . . . 4 𝑤𝑧𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)
14 fveq2 6792 . . . . . 6 (𝑤 = 𝑥 → (rank‘𝑤) = (rank‘𝑥))
1514sseq1d 3954 . . . . 5 (𝑤 = 𝑥 → ((rank‘𝑤) ⊆ (rank‘𝑧) ↔ (rank‘𝑥) ⊆ (rank‘𝑧)))
1615ralbidv 3168 . . . 4 (𝑤 = 𝑥 → (∀𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧) ↔ ∀𝑧𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)))
179, 10, 12, 13, 16cbvrabw 3426 . . 3 {𝑤𝐴 ∣ ∀𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} = {𝑥𝐴 ∣ ∀𝑧𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)}
188, 17eqtr4i 2764 . 2 {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑤𝐴 ∣ ∀𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)}
19 scottex 9671 . 2 {𝑤𝐴 ∣ ∀𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} ∈ V
2018, 19eqeltri 2830 1 {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2101  wnfc 2882  wral 3059  {crab 3221  Vcvv 3434  wss 3889  cfv 6447  rankcrnk 9549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-rep 5212  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-reg 9379  ax-inf2 9427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-int 4883  df-iun 4929  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-ov 7298  df-om 7733  df-2nd 7852  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-rdg 8261  df-r1 9550  df-rank 9551
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator