Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > scottexf | Structured version Visualization version GIF version |
Description: A version of scottex 9742 with nonfree variables instead of distinct variables. (Contributed by Giovanni Mascellani, 19-Aug-2018.) |
Ref | Expression |
---|---|
scottexf.1 | ⊢ Ⅎ𝑦𝐴 |
scottexf.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
scottexf | ⊢ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scottexf.1 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
2 | nfcv 2904 | . . . . 5 ⊢ Ⅎ𝑧𝐴 | |
3 | nfv 1916 | . . . . 5 ⊢ Ⅎ𝑧(rank‘𝑥) ⊆ (rank‘𝑦) | |
4 | nfv 1916 | . . . . 5 ⊢ Ⅎ𝑦(rank‘𝑥) ⊆ (rank‘𝑧) | |
5 | fveq2 6825 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (rank‘𝑦) = (rank‘𝑧)) | |
6 | 5 | sseq2d 3964 | . . . . 5 ⊢ (𝑦 = 𝑧 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑥) ⊆ (rank‘𝑧))) |
7 | 1, 2, 3, 4, 6 | cbvralfw 3283 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)) |
8 | 7 | rabbii 3409 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)} |
9 | nfcv 2904 | . . . 4 ⊢ Ⅎ𝑤𝐴 | |
10 | scottexf.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
11 | nfv 1916 | . . . . 5 ⊢ Ⅎ𝑥(rank‘𝑤) ⊆ (rank‘𝑧) | |
12 | 10, 11 | nfralw 3290 | . . . 4 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧) |
13 | nfv 1916 | . . . 4 ⊢ Ⅎ𝑤∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧) | |
14 | fveq2 6825 | . . . . . 6 ⊢ (𝑤 = 𝑥 → (rank‘𝑤) = (rank‘𝑥)) | |
15 | 14 | sseq1d 3963 | . . . . 5 ⊢ (𝑤 = 𝑥 → ((rank‘𝑤) ⊆ (rank‘𝑧) ↔ (rank‘𝑥) ⊆ (rank‘𝑧))) |
16 | 15 | ralbidv 3170 | . . . 4 ⊢ (𝑤 = 𝑥 → (∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧) ↔ ∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧))) |
17 | 9, 10, 12, 13, 16 | cbvrabw 3435 | . . 3 ⊢ {𝑤 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} = {𝑥 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)} |
18 | 8, 17 | eqtr4i 2767 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑤 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} |
19 | scottex 9742 | . 2 ⊢ {𝑤 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} ∈ V | |
20 | 18, 19 | eqeltri 2833 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 Ⅎwnfc 2884 ∀wral 3061 {crab 3403 Vcvv 3441 ⊆ wss 3898 ‘cfv 6479 rankcrnk 9620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-reg 9449 ax-inf2 9498 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-ov 7340 df-om 7781 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-r1 9621 df-rank 9622 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |