| Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > scottexf | Structured version Visualization version GIF version | ||
| Description: A version of scottex 9904 with nonfree variables instead of distinct variables. (Contributed by Giovanni Mascellani, 19-Aug-2018.) |
| Ref | Expression |
|---|---|
| scottexf.1 | ⊢ Ⅎ𝑦𝐴 |
| scottexf.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| scottexf | ⊢ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scottexf.1 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
| 2 | nfcv 2899 | . . . . 5 ⊢ Ⅎ𝑧𝐴 | |
| 3 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑧(rank‘𝑥) ⊆ (rank‘𝑦) | |
| 4 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑦(rank‘𝑥) ⊆ (rank‘𝑧) | |
| 5 | fveq2 6881 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (rank‘𝑦) = (rank‘𝑧)) | |
| 6 | 5 | sseq2d 3996 | . . . . 5 ⊢ (𝑦 = 𝑧 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑥) ⊆ (rank‘𝑧))) |
| 7 | 1, 2, 3, 4, 6 | cbvralfw 3288 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)) |
| 8 | 7 | rabbii 3426 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)} |
| 9 | nfcv 2899 | . . . 4 ⊢ Ⅎ𝑤𝐴 | |
| 10 | scottexf.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 11 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑥(rank‘𝑤) ⊆ (rank‘𝑧) | |
| 12 | 10, 11 | nfralw 3295 | . . . 4 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧) |
| 13 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑤∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧) | |
| 14 | fveq2 6881 | . . . . . 6 ⊢ (𝑤 = 𝑥 → (rank‘𝑤) = (rank‘𝑥)) | |
| 15 | 14 | sseq1d 3995 | . . . . 5 ⊢ (𝑤 = 𝑥 → ((rank‘𝑤) ⊆ (rank‘𝑧) ↔ (rank‘𝑥) ⊆ (rank‘𝑧))) |
| 16 | 15 | ralbidv 3164 | . . . 4 ⊢ (𝑤 = 𝑥 → (∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧) ↔ ∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧))) |
| 17 | 9, 10, 12, 13, 16 | cbvrabw 3457 | . . 3 ⊢ {𝑤 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} = {𝑥 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)} |
| 18 | 8, 17 | eqtr4i 2762 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑤 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} |
| 19 | scottex 9904 | . 2 ⊢ {𝑤 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} ∈ V | |
| 20 | 18, 19 | eqeltri 2831 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2884 ∀wral 3052 {crab 3420 Vcvv 3464 ⊆ wss 3931 ‘cfv 6536 rankcrnk 9782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-reg 9611 ax-inf2 9660 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-r1 9783 df-rank 9784 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |