Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > scottexf | Structured version Visualization version GIF version |
Description: A version of scottex 9671 with nonfree variables instead of distinct variables. (Contributed by Giovanni Mascellani, 19-Aug-2018.) |
Ref | Expression |
---|---|
scottexf.1 | ⊢ Ⅎ𝑦𝐴 |
scottexf.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
scottexf | ⊢ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scottexf.1 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
2 | nfcv 2902 | . . . . 5 ⊢ Ⅎ𝑧𝐴 | |
3 | nfv 1913 | . . . . 5 ⊢ Ⅎ𝑧(rank‘𝑥) ⊆ (rank‘𝑦) | |
4 | nfv 1913 | . . . . 5 ⊢ Ⅎ𝑦(rank‘𝑥) ⊆ (rank‘𝑧) | |
5 | fveq2 6792 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (rank‘𝑦) = (rank‘𝑧)) | |
6 | 5 | sseq2d 3955 | . . . . 5 ⊢ (𝑦 = 𝑧 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑥) ⊆ (rank‘𝑧))) |
7 | 1, 2, 3, 4, 6 | cbvralfw 3370 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)) |
8 | 7 | rabbii 3410 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)} |
9 | nfcv 2902 | . . . 4 ⊢ Ⅎ𝑤𝐴 | |
10 | scottexf.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
11 | nfv 1913 | . . . . 5 ⊢ Ⅎ𝑥(rank‘𝑤) ⊆ (rank‘𝑧) | |
12 | 10, 11 | nfralw 3245 | . . . 4 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧) |
13 | nfv 1913 | . . . 4 ⊢ Ⅎ𝑤∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧) | |
14 | fveq2 6792 | . . . . . 6 ⊢ (𝑤 = 𝑥 → (rank‘𝑤) = (rank‘𝑥)) | |
15 | 14 | sseq1d 3954 | . . . . 5 ⊢ (𝑤 = 𝑥 → ((rank‘𝑤) ⊆ (rank‘𝑧) ↔ (rank‘𝑥) ⊆ (rank‘𝑧))) |
16 | 15 | ralbidv 3168 | . . . 4 ⊢ (𝑤 = 𝑥 → (∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧) ↔ ∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧))) |
17 | 9, 10, 12, 13, 16 | cbvrabw 3426 | . . 3 ⊢ {𝑤 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} = {𝑥 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)} |
18 | 8, 17 | eqtr4i 2764 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑤 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} |
19 | scottex 9671 | . 2 ⊢ {𝑤 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} ∈ V | |
20 | 18, 19 | eqeltri 2830 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2101 Ⅎwnfc 2882 ∀wral 3059 {crab 3221 Vcvv 3434 ⊆ wss 3889 ‘cfv 6447 rankcrnk 9549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-reg 9379 ax-inf2 9427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-int 4883 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-ov 7298 df-om 7733 df-2nd 7852 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-r1 9550 df-rank 9551 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |