![]() |
Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > scottexf | Structured version Visualization version GIF version |
Description: A version of scottex 9883 with nonfree variables instead of distinct variables. (Contributed by Giovanni Mascellani, 19-Aug-2018.) |
Ref | Expression |
---|---|
scottexf.1 | β’ β²π¦π΄ |
scottexf.2 | β’ β²π₯π΄ |
Ref | Expression |
---|---|
scottexf | β’ {π₯ β π΄ β£ βπ¦ β π΄ (rankβπ₯) β (rankβπ¦)} β V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scottexf.1 | . . . . 5 β’ β²π¦π΄ | |
2 | nfcv 2902 | . . . . 5 β’ β²π§π΄ | |
3 | nfv 1916 | . . . . 5 β’ β²π§(rankβπ₯) β (rankβπ¦) | |
4 | nfv 1916 | . . . . 5 β’ β²π¦(rankβπ₯) β (rankβπ§) | |
5 | fveq2 6891 | . . . . . 6 β’ (π¦ = π§ β (rankβπ¦) = (rankβπ§)) | |
6 | 5 | sseq2d 4014 | . . . . 5 β’ (π¦ = π§ β ((rankβπ₯) β (rankβπ¦) β (rankβπ₯) β (rankβπ§))) |
7 | 1, 2, 3, 4, 6 | cbvralfw 3300 | . . . 4 β’ (βπ¦ β π΄ (rankβπ₯) β (rankβπ¦) β βπ§ β π΄ (rankβπ₯) β (rankβπ§)) |
8 | 7 | rabbii 3437 | . . 3 β’ {π₯ β π΄ β£ βπ¦ β π΄ (rankβπ₯) β (rankβπ¦)} = {π₯ β π΄ β£ βπ§ β π΄ (rankβπ₯) β (rankβπ§)} |
9 | nfcv 2902 | . . . 4 β’ β²π€π΄ | |
10 | scottexf.2 | . . . 4 β’ β²π₯π΄ | |
11 | nfv 1916 | . . . . 5 β’ β²π₯(rankβπ€) β (rankβπ§) | |
12 | 10, 11 | nfralw 3307 | . . . 4 β’ β²π₯βπ§ β π΄ (rankβπ€) β (rankβπ§) |
13 | nfv 1916 | . . . 4 β’ β²π€βπ§ β π΄ (rankβπ₯) β (rankβπ§) | |
14 | fveq2 6891 | . . . . . 6 β’ (π€ = π₯ β (rankβπ€) = (rankβπ₯)) | |
15 | 14 | sseq1d 4013 | . . . . 5 β’ (π€ = π₯ β ((rankβπ€) β (rankβπ§) β (rankβπ₯) β (rankβπ§))) |
16 | 15 | ralbidv 3176 | . . . 4 β’ (π€ = π₯ β (βπ§ β π΄ (rankβπ€) β (rankβπ§) β βπ§ β π΄ (rankβπ₯) β (rankβπ§))) |
17 | 9, 10, 12, 13, 16 | cbvrabw 3466 | . . 3 β’ {π€ β π΄ β£ βπ§ β π΄ (rankβπ€) β (rankβπ§)} = {π₯ β π΄ β£ βπ§ β π΄ (rankβπ₯) β (rankβπ§)} |
18 | 8, 17 | eqtr4i 2762 | . 2 β’ {π₯ β π΄ β£ βπ¦ β π΄ (rankβπ₯) β (rankβπ¦)} = {π€ β π΄ β£ βπ§ β π΄ (rankβπ€) β (rankβπ§)} |
19 | scottex 9883 | . 2 β’ {π€ β π΄ β£ βπ§ β π΄ (rankβπ€) β (rankβπ§)} β V | |
20 | 18, 19 | eqeltri 2828 | 1 β’ {π₯ β π΄ β£ βπ¦ β π΄ (rankβπ₯) β (rankβπ¦)} β V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 β wcel 2105 β²wnfc 2882 βwral 3060 {crab 3431 Vcvv 3473 β wss 3948 βcfv 6543 rankcrnk 9761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-reg 9590 ax-inf2 9639 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-om 7859 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-r1 9762 df-rank 9763 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |