Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scottexf Structured version   Visualization version   GIF version

Theorem scottexf 38168
Description: A version of scottex 9781 with nonfree variables instead of distinct variables. (Contributed by Giovanni Mascellani, 19-Aug-2018.)
Hypotheses
Ref Expression
scottexf.1 𝑦𝐴
scottexf.2 𝑥𝐴
Assertion
Ref Expression
scottexf {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem scottexf
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scottexf.1 . . . . 5 𝑦𝐴
2 nfcv 2891 . . . . 5 𝑧𝐴
3 nfv 1914 . . . . 5 𝑧(rank‘𝑥) ⊆ (rank‘𝑦)
4 nfv 1914 . . . . 5 𝑦(rank‘𝑥) ⊆ (rank‘𝑧)
5 fveq2 6822 . . . . . 6 (𝑦 = 𝑧 → (rank‘𝑦) = (rank‘𝑧))
65sseq2d 3968 . . . . 5 (𝑦 = 𝑧 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑥) ⊆ (rank‘𝑧)))
71, 2, 3, 4, 6cbvralfw 3269 . . . 4 (∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑧𝐴 (rank‘𝑥) ⊆ (rank‘𝑧))
87rabbii 3400 . . 3 {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥𝐴 ∣ ∀𝑧𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)}
9 nfcv 2891 . . . 4 𝑤𝐴
10 scottexf.2 . . . 4 𝑥𝐴
11 nfv 1914 . . . . 5 𝑥(rank‘𝑤) ⊆ (rank‘𝑧)
1210, 11nfralw 3276 . . . 4 𝑥𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)
13 nfv 1914 . . . 4 𝑤𝑧𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)
14 fveq2 6822 . . . . . 6 (𝑤 = 𝑥 → (rank‘𝑤) = (rank‘𝑥))
1514sseq1d 3967 . . . . 5 (𝑤 = 𝑥 → ((rank‘𝑤) ⊆ (rank‘𝑧) ↔ (rank‘𝑥) ⊆ (rank‘𝑧)))
1615ralbidv 3152 . . . 4 (𝑤 = 𝑥 → (∀𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧) ↔ ∀𝑧𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)))
179, 10, 12, 13, 16cbvrabw 3430 . . 3 {𝑤𝐴 ∣ ∀𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} = {𝑥𝐴 ∣ ∀𝑧𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)}
188, 17eqtr4i 2755 . 2 {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑤𝐴 ∣ ∀𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)}
19 scottex 9781 . 2 {𝑤𝐴 ∣ ∀𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} ∈ V
2018, 19eqeltri 2824 1 {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wnfc 2876  wral 3044  {crab 3394  Vcvv 3436  wss 3903  cfv 6482  rankcrnk 9659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-reg 9484  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-r1 9660  df-rank 9661
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator