Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scottexf Structured version   Visualization version   GIF version

Theorem scottexf 38175
Description: A version of scottex 9925 with nonfree variables instead of distinct variables. (Contributed by Giovanni Mascellani, 19-Aug-2018.)
Hypotheses
Ref Expression
scottexf.1 𝑦𝐴
scottexf.2 𝑥𝐴
Assertion
Ref Expression
scottexf {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem scottexf
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scottexf.1 . . . . 5 𝑦𝐴
2 nfcv 2905 . . . . 5 𝑧𝐴
3 nfv 1914 . . . . 5 𝑧(rank‘𝑥) ⊆ (rank‘𝑦)
4 nfv 1914 . . . . 5 𝑦(rank‘𝑥) ⊆ (rank‘𝑧)
5 fveq2 6906 . . . . . 6 (𝑦 = 𝑧 → (rank‘𝑦) = (rank‘𝑧))
65sseq2d 4016 . . . . 5 (𝑦 = 𝑧 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑥) ⊆ (rank‘𝑧)))
71, 2, 3, 4, 6cbvralfw 3304 . . . 4 (∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑧𝐴 (rank‘𝑥) ⊆ (rank‘𝑧))
87rabbii 3442 . . 3 {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥𝐴 ∣ ∀𝑧𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)}
9 nfcv 2905 . . . 4 𝑤𝐴
10 scottexf.2 . . . 4 𝑥𝐴
11 nfv 1914 . . . . 5 𝑥(rank‘𝑤) ⊆ (rank‘𝑧)
1210, 11nfralw 3311 . . . 4 𝑥𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)
13 nfv 1914 . . . 4 𝑤𝑧𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)
14 fveq2 6906 . . . . . 6 (𝑤 = 𝑥 → (rank‘𝑤) = (rank‘𝑥))
1514sseq1d 4015 . . . . 5 (𝑤 = 𝑥 → ((rank‘𝑤) ⊆ (rank‘𝑧) ↔ (rank‘𝑥) ⊆ (rank‘𝑧)))
1615ralbidv 3178 . . . 4 (𝑤 = 𝑥 → (∀𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧) ↔ ∀𝑧𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)))
179, 10, 12, 13, 16cbvrabw 3473 . . 3 {𝑤𝐴 ∣ ∀𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} = {𝑥𝐴 ∣ ∀𝑧𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)}
188, 17eqtr4i 2768 . 2 {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑤𝐴 ∣ ∀𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)}
19 scottex 9925 . 2 {𝑤𝐴 ∣ ∀𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} ∈ V
2018, 19eqeltri 2837 1 {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  wnfc 2890  wral 3061  {crab 3436  Vcvv 3480  wss 3951  cfv 6561  rankcrnk 9803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-reg 9632  ax-inf2 9681
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-r1 9804  df-rank 9805
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator