Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmptff Structured version   Visualization version   GIF version

Theorem fmptff 43064
Description: Functionality of the mapping operation. (Contributed by Glauco Siliprandi, 5-Jan-2025.)
Hypotheses
Ref Expression
fmptff.1 𝑥𝐴
fmptff.2 𝑥𝐵
fmptff.3 𝐹 = (𝑥𝐴𝐶)
Assertion
Ref Expression
fmptff (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)

Proof of Theorem fmptff
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fmptff.1 . . 3 𝑥𝐴
2 nfcv 2904 . . 3 𝑦𝐴
3 nfv 1916 . . 3 𝑦 𝐶𝐵
4 nfcsb1v 3866 . . . 4 𝑥𝑦 / 𝑥𝐶
5 fmptff.2 . . . 4 𝑥𝐵
64, 5nfel 2918 . . 3 𝑥𝑦 / 𝑥𝐶𝐵
7 csbeq1a 3855 . . . 4 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
87eleq1d 2821 . . 3 (𝑥 = 𝑦 → (𝐶𝐵𝑦 / 𝑥𝐶𝐵))
91, 2, 3, 6, 8cbvralfw 3283 . 2 (∀𝑥𝐴 𝐶𝐵 ↔ ∀𝑦𝐴 𝑦 / 𝑥𝐶𝐵)
10 fmptff.3 . . . 4 𝐹 = (𝑥𝐴𝐶)
11 nfcv 2904 . . . . 5 𝑦𝐶
121, 2, 11, 4, 7cbvmptf 5195 . . . 4 (𝑥𝐴𝐶) = (𝑦𝐴𝑦 / 𝑥𝐶)
1310, 12eqtri 2764 . . 3 𝐹 = (𝑦𝐴𝑦 / 𝑥𝐶)
1413fmpt 7023 . 2 (∀𝑦𝐴 𝑦 / 𝑥𝐶𝐵𝐹:𝐴𝐵)
159, 14bitri 274 1 (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1540  wcel 2105  wnfc 2884  wral 3061  csb 3841  cmpt 5169  wf 6461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pr 5366
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-br 5087  df-opab 5149  df-mpt 5170  df-id 5506  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-fun 6467  df-fn 6468  df-f 6469
This theorem is referenced by:  fvmptelcdmf  43065  fmptdff  43066
  Copyright terms: Public domain W3C validator