Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmptff Structured version   Visualization version   GIF version

Theorem fmptff 44527
Description: Functionality of the mapping operation. (Contributed by Glauco Siliprandi, 5-Jan-2025.)
Hypotheses
Ref Expression
fmptff.1 𝑥𝐴
fmptff.2 𝑥𝐵
fmptff.3 𝐹 = (𝑥𝐴𝐶)
Assertion
Ref Expression
fmptff (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)

Proof of Theorem fmptff
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fmptff.1 . . 3 𝑥𝐴
2 nfcv 2897 . . 3 𝑦𝐴
3 nfv 1909 . . 3 𝑦 𝐶𝐵
4 nfcsb1v 3913 . . . 4 𝑥𝑦 / 𝑥𝐶
5 fmptff.2 . . . 4 𝑥𝐵
64, 5nfel 2911 . . 3 𝑥𝑦 / 𝑥𝐶𝐵
7 csbeq1a 3902 . . . 4 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
87eleq1d 2812 . . 3 (𝑥 = 𝑦 → (𝐶𝐵𝑦 / 𝑥𝐶𝐵))
91, 2, 3, 6, 8cbvralfw 3295 . 2 (∀𝑥𝐴 𝐶𝐵 ↔ ∀𝑦𝐴 𝑦 / 𝑥𝐶𝐵)
10 fmptff.3 . . . 4 𝐹 = (𝑥𝐴𝐶)
11 nfcv 2897 . . . . 5 𝑦𝐶
121, 2, 11, 4, 7cbvmptf 5250 . . . 4 (𝑥𝐴𝐶) = (𝑦𝐴𝑦 / 𝑥𝐶)
1310, 12eqtri 2754 . . 3 𝐹 = (𝑦𝐴𝑦 / 𝑥𝐶)
1413fmpt 7104 . 2 (∀𝑦𝐴 𝑦 / 𝑥𝐶𝐵𝐹:𝐴𝐵)
159, 14bitri 275 1 (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1533  wcel 2098  wnfc 2877  wral 3055  csb 3888  cmpt 5224  wf 6532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-fun 6538  df-fn 6539  df-f 6540
This theorem is referenced by:  fvmptelcdmf  44528  fmptdff  44529  rnmptssff  44532
  Copyright terms: Public domain W3C validator