Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmptff Structured version   Visualization version   GIF version

Theorem fmptff 45179
Description: Functionality of the mapping operation. (Contributed by Glauco Siliprandi, 5-Jan-2025.)
Hypotheses
Ref Expression
fmptff.1 𝑥𝐴
fmptff.2 𝑥𝐵
fmptff.3 𝐹 = (𝑥𝐴𝐶)
Assertion
Ref Expression
fmptff (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)

Proof of Theorem fmptff
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fmptff.1 . . 3 𝑥𝐴
2 nfcv 2908 . . 3 𝑦𝐴
3 nfv 1913 . . 3 𝑦 𝐶𝐵
4 nfcsb1v 3946 . . . 4 𝑥𝑦 / 𝑥𝐶
5 fmptff.2 . . . 4 𝑥𝐵
64, 5nfel 2923 . . 3 𝑥𝑦 / 𝑥𝐶𝐵
7 csbeq1a 3935 . . . 4 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
87eleq1d 2829 . . 3 (𝑥 = 𝑦 → (𝐶𝐵𝑦 / 𝑥𝐶𝐵))
91, 2, 3, 6, 8cbvralfw 3310 . 2 (∀𝑥𝐴 𝐶𝐵 ↔ ∀𝑦𝐴 𝑦 / 𝑥𝐶𝐵)
10 fmptff.3 . . . 4 𝐹 = (𝑥𝐴𝐶)
11 nfcv 2908 . . . . 5 𝑦𝐶
121, 2, 11, 4, 7cbvmptf 5275 . . . 4 (𝑥𝐴𝐶) = (𝑦𝐴𝑦 / 𝑥𝐶)
1310, 12eqtri 2768 . . 3 𝐹 = (𝑦𝐴𝑦 / 𝑥𝐶)
1413fmpt 7144 . 2 (∀𝑦𝐴 𝑦 / 𝑥𝐶𝐵𝐹:𝐴𝐵)
159, 14bitri 275 1 (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wcel 2108  wnfc 2893  wral 3067  csb 3921  cmpt 5249  wf 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6575  df-fn 6576  df-f 6577
This theorem is referenced by:  fvmptelcdmf  45180  fmptdff  45181  rnmptssff  45184
  Copyright terms: Public domain W3C validator