Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmptff Structured version   Visualization version   GIF version

Theorem fmptff 45273
Description: Functionality of the mapping operation. (Contributed by Glauco Siliprandi, 5-Jan-2025.)
Hypotheses
Ref Expression
fmptff.1 𝑥𝐴
fmptff.2 𝑥𝐵
fmptff.3 𝐹 = (𝑥𝐴𝐶)
Assertion
Ref Expression
fmptff (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)

Proof of Theorem fmptff
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fmptff.1 . . 3 𝑥𝐴
2 nfcv 2899 . . 3 𝑦𝐴
3 nfv 1914 . . 3 𝑦 𝐶𝐵
4 nfcsb1v 3903 . . . 4 𝑥𝑦 / 𝑥𝐶
5 fmptff.2 . . . 4 𝑥𝐵
64, 5nfel 2914 . . 3 𝑥𝑦 / 𝑥𝐶𝐵
7 csbeq1a 3893 . . . 4 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
87eleq1d 2820 . . 3 (𝑥 = 𝑦 → (𝐶𝐵𝑦 / 𝑥𝐶𝐵))
91, 2, 3, 6, 8cbvralfw 3288 . 2 (∀𝑥𝐴 𝐶𝐵 ↔ ∀𝑦𝐴 𝑦 / 𝑥𝐶𝐵)
10 fmptff.3 . . . 4 𝐹 = (𝑥𝐴𝐶)
11 nfcv 2899 . . . . 5 𝑦𝐶
121, 2, 11, 4, 7cbvmptf 5226 . . . 4 (𝑥𝐴𝐶) = (𝑦𝐴𝑦 / 𝑥𝐶)
1310, 12eqtri 2759 . . 3 𝐹 = (𝑦𝐴𝑦 / 𝑥𝐶)
1413fmpt 7105 . 2 (∀𝑦𝐴 𝑦 / 𝑥𝐶𝐵𝐹:𝐴𝐵)
159, 14bitri 275 1 (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  wnfc 2884  wral 3052  csb 3879  cmpt 5206  wf 6532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-fun 6538  df-fn 6539  df-f 6540
This theorem is referenced by:  fvmptelcdmf  45274  fmptdff  45275  rnmptssff  45278
  Copyright terms: Public domain W3C validator