![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmptff | Structured version Visualization version GIF version |
Description: Functionality of the mapping operation. (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
Ref | Expression |
---|---|
fmptff.1 | ⊢ Ⅎ𝑥𝐴 |
fmptff.2 | ⊢ Ⅎ𝑥𝐵 |
fmptff.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
Ref | Expression |
---|---|
fmptff | ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmptff.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2908 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
3 | nfv 1913 | . . 3 ⊢ Ⅎ𝑦 𝐶 ∈ 𝐵 | |
4 | nfcsb1v 3946 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
5 | fmptff.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
6 | 4, 5 | nfel 2923 | . . 3 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 ∈ 𝐵 |
7 | csbeq1a 3935 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
8 | 7 | eleq1d 2829 | . . 3 ⊢ (𝑥 = 𝑦 → (𝐶 ∈ 𝐵 ↔ ⦋𝑦 / 𝑥⦌𝐶 ∈ 𝐵)) |
9 | 1, 2, 3, 6, 8 | cbvralfw 3310 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ ∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐶 ∈ 𝐵) |
10 | fmptff.3 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
11 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑦𝐶 | |
12 | 1, 2, 11, 4, 7 | cbvmptf 5275 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) |
13 | 10, 12 | eqtri 2768 | . . 3 ⊢ 𝐹 = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) |
14 | 13 | fmpt 7144 | . 2 ⊢ (∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
15 | 9, 14 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 Ⅎwnfc 2893 ∀wral 3067 ⦋csb 3921 ↦ cmpt 5249 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6575 df-fn 6576 df-f 6577 |
This theorem is referenced by: fvmptelcdmf 45180 fmptdff 45181 rnmptssff 45184 |
Copyright terms: Public domain | W3C validator |