Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmptff Structured version   Visualization version   GIF version

Theorem fmptff 45281
Description: Functionality of the mapping operation. (Contributed by Glauco Siliprandi, 5-Jan-2025.)
Hypotheses
Ref Expression
fmptff.1 𝑥𝐴
fmptff.2 𝑥𝐵
fmptff.3 𝐹 = (𝑥𝐴𝐶)
Assertion
Ref Expression
fmptff (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)

Proof of Theorem fmptff
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fmptff.1 . . 3 𝑥𝐴
2 nfcv 2904 . . 3 𝑦𝐴
3 nfv 1913 . . 3 𝑦 𝐶𝐵
4 nfcsb1v 3922 . . . 4 𝑥𝑦 / 𝑥𝐶
5 fmptff.2 . . . 4 𝑥𝐵
64, 5nfel 2919 . . 3 𝑥𝑦 / 𝑥𝐶𝐵
7 csbeq1a 3912 . . . 4 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
87eleq1d 2825 . . 3 (𝑥 = 𝑦 → (𝐶𝐵𝑦 / 𝑥𝐶𝐵))
91, 2, 3, 6, 8cbvralfw 3303 . 2 (∀𝑥𝐴 𝐶𝐵 ↔ ∀𝑦𝐴 𝑦 / 𝑥𝐶𝐵)
10 fmptff.3 . . . 4 𝐹 = (𝑥𝐴𝐶)
11 nfcv 2904 . . . . 5 𝑦𝐶
121, 2, 11, 4, 7cbvmptf 5250 . . . 4 (𝑥𝐴𝐶) = (𝑦𝐴𝑦 / 𝑥𝐶)
1310, 12eqtri 2764 . . 3 𝐹 = (𝑦𝐴𝑦 / 𝑥𝐶)
1413fmpt 7129 . 2 (∀𝑦𝐴 𝑦 / 𝑥𝐶𝐵𝐹:𝐴𝐵)
159, 14bitri 275 1 (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1539  wcel 2107  wnfc 2889  wral 3060  csb 3898  cmpt 5224  wf 6556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-fun 6562  df-fn 6563  df-f 6564
This theorem is referenced by:  fvmptelcdmf  45282  fmptdff  45283  rnmptssff  45286
  Copyright terms: Public domain W3C validator