![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmptff | Structured version Visualization version GIF version |
Description: Functionality of the mapping operation. (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
Ref | Expression |
---|---|
fmptff.1 | ⊢ Ⅎ𝑥𝐴 |
fmptff.2 | ⊢ Ⅎ𝑥𝐵 |
fmptff.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
Ref | Expression |
---|---|
fmptff | ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmptff.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2903 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
3 | nfv 1912 | . . 3 ⊢ Ⅎ𝑦 𝐶 ∈ 𝐵 | |
4 | nfcsb1v 3933 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
5 | fmptff.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
6 | 4, 5 | nfel 2918 | . . 3 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 ∈ 𝐵 |
7 | csbeq1a 3922 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
8 | 7 | eleq1d 2824 | . . 3 ⊢ (𝑥 = 𝑦 → (𝐶 ∈ 𝐵 ↔ ⦋𝑦 / 𝑥⦌𝐶 ∈ 𝐵)) |
9 | 1, 2, 3, 6, 8 | cbvralfw 3302 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ ∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐶 ∈ 𝐵) |
10 | fmptff.3 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
11 | nfcv 2903 | . . . . 5 ⊢ Ⅎ𝑦𝐶 | |
12 | 1, 2, 11, 4, 7 | cbvmptf 5257 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) |
13 | 10, 12 | eqtri 2763 | . . 3 ⊢ 𝐹 = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) |
14 | 13 | fmpt 7130 | . 2 ⊢ (∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
15 | 9, 14 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2106 Ⅎwnfc 2888 ∀wral 3059 ⦋csb 3908 ↦ cmpt 5231 ⟶wf 6559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-fun 6565 df-fn 6566 df-f 6567 |
This theorem is referenced by: fvmptelcdmf 45216 fmptdff 45217 rnmptssff 45220 |
Copyright terms: Public domain | W3C validator |