| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmptff | Structured version Visualization version GIF version | ||
| Description: Functionality of the mapping operation. (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
| Ref | Expression |
|---|---|
| fmptff.1 | ⊢ Ⅎ𝑥𝐴 |
| fmptff.2 | ⊢ Ⅎ𝑥𝐵 |
| fmptff.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| Ref | Expression |
|---|---|
| fmptff | ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmptff.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2904 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
| 3 | nfv 1913 | . . 3 ⊢ Ⅎ𝑦 𝐶 ∈ 𝐵 | |
| 4 | nfcsb1v 3922 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
| 5 | fmptff.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 6 | 4, 5 | nfel 2919 | . . 3 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 ∈ 𝐵 |
| 7 | csbeq1a 3912 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
| 8 | 7 | eleq1d 2825 | . . 3 ⊢ (𝑥 = 𝑦 → (𝐶 ∈ 𝐵 ↔ ⦋𝑦 / 𝑥⦌𝐶 ∈ 𝐵)) |
| 9 | 1, 2, 3, 6, 8 | cbvralfw 3303 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ ∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐶 ∈ 𝐵) |
| 10 | fmptff.3 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
| 11 | nfcv 2904 | . . . . 5 ⊢ Ⅎ𝑦𝐶 | |
| 12 | 1, 2, 11, 4, 7 | cbvmptf 5250 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) |
| 13 | 10, 12 | eqtri 2764 | . . 3 ⊢ 𝐹 = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) |
| 14 | 13 | fmpt 7129 | . 2 ⊢ (∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
| 15 | 9, 14 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 ∈ wcel 2107 Ⅎwnfc 2889 ∀wral 3060 ⦋csb 3898 ↦ cmpt 5224 ⟶wf 6556 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-fun 6562 df-fn 6563 df-f 6564 |
| This theorem is referenced by: fvmptelcdmf 45282 fmptdff 45283 rnmptssff 45286 |
| Copyright terms: Public domain | W3C validator |