Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmptff | Structured version Visualization version GIF version |
Description: Functionality of the mapping operation. (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
Ref | Expression |
---|---|
fmptff.1 | ⊢ Ⅎ𝑥𝐴 |
fmptff.2 | ⊢ Ⅎ𝑥𝐵 |
fmptff.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
Ref | Expression |
---|---|
fmptff | ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmptff.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2904 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
3 | nfv 1915 | . . 3 ⊢ Ⅎ𝑦 𝐶 ∈ 𝐵 | |
4 | nfcsb1v 3862 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
5 | fmptff.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
6 | 4, 5 | nfel 2918 | . . 3 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 ∈ 𝐵 |
7 | csbeq1a 3851 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
8 | 7 | eleq1d 2821 | . . 3 ⊢ (𝑥 = 𝑦 → (𝐶 ∈ 𝐵 ↔ ⦋𝑦 / 𝑥⦌𝐶 ∈ 𝐵)) |
9 | 1, 2, 3, 6, 8 | cbvralfw 3283 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ ∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐶 ∈ 𝐵) |
10 | fmptff.3 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
11 | nfcv 2904 | . . . . 5 ⊢ Ⅎ𝑦𝐶 | |
12 | 1, 2, 11, 4, 7 | cbvmptf 5190 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) |
13 | 10, 12 | eqtri 2764 | . . 3 ⊢ 𝐹 = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) |
14 | 13 | fmpt 7016 | . 2 ⊢ (∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
15 | 9, 14 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2104 Ⅎwnfc 2884 ∀wral 3061 ⦋csb 3837 ↦ cmpt 5164 ⟶wf 6454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3341 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-fun 6460 df-fn 6461 df-f 6462 |
This theorem is referenced by: fvmptelcdmf 43048 fmptdff 43049 |
Copyright terms: Public domain | W3C validator |