Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scott0f Structured version   Visualization version   GIF version

Theorem scott0f 37341
Description: A version of scott0 9884 with nonfree variables instead of distinct variables. (Contributed by Giovanni Mascellani, 19-Aug-2018.)
Hypotheses
Ref Expression
scott0f.1 Ⅎ𝑦𝐴
scott0f.2 β„²π‘₯𝐴
Assertion
Ref Expression
scott0f (𝐴 = βˆ… ↔ {π‘₯ ∈ 𝐴 ∣ βˆ€π‘¦ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)} = βˆ…)
Distinct variable group:   π‘₯,𝑦
Allowed substitution hints:   𝐴(π‘₯,𝑦)

Proof of Theorem scott0f
Dummy variables 𝑧 𝑀 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scott0 9884 . 2 (𝐴 = βˆ… ↔ {𝑀 ∈ 𝐴 ∣ βˆ€π‘§ ∈ 𝐴 (rankβ€˜π‘€) βŠ† (rankβ€˜π‘§)} = βˆ…)
2 scott0f.1 . . . . . 6 Ⅎ𝑦𝐴
3 nfcv 2902 . . . . . 6 Ⅎ𝑧𝐴
4 nfv 1916 . . . . . 6 Ⅎ𝑧(rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)
5 nfv 1916 . . . . . 6 Ⅎ𝑦(rankβ€˜π‘₯) βŠ† (rankβ€˜π‘§)
6 fveq2 6891 . . . . . . 7 (𝑦 = 𝑧 β†’ (rankβ€˜π‘¦) = (rankβ€˜π‘§))
76sseq2d 4014 . . . . . 6 (𝑦 = 𝑧 β†’ ((rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦) ↔ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘§)))
82, 3, 4, 5, 7cbvralfw 3300 . . . . 5 (βˆ€π‘¦ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦) ↔ βˆ€π‘§ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘§))
98rabbii 3437 . . . 4 {π‘₯ ∈ 𝐴 ∣ βˆ€π‘¦ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)} = {π‘₯ ∈ 𝐴 ∣ βˆ€π‘§ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘§)}
10 nfcv 2902 . . . . 5 Ⅎ𝑀𝐴
11 scott0f.2 . . . . 5 β„²π‘₯𝐴
12 nfv 1916 . . . . . 6 β„²π‘₯(rankβ€˜π‘€) βŠ† (rankβ€˜π‘§)
1311, 12nfralw 3307 . . . . 5 β„²π‘₯βˆ€π‘§ ∈ 𝐴 (rankβ€˜π‘€) βŠ† (rankβ€˜π‘§)
14 nfv 1916 . . . . 5 β„²π‘€βˆ€π‘§ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘§)
15 fveq2 6891 . . . . . . 7 (𝑀 = π‘₯ β†’ (rankβ€˜π‘€) = (rankβ€˜π‘₯))
1615sseq1d 4013 . . . . . 6 (𝑀 = π‘₯ β†’ ((rankβ€˜π‘€) βŠ† (rankβ€˜π‘§) ↔ (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘§)))
1716ralbidv 3176 . . . . 5 (𝑀 = π‘₯ β†’ (βˆ€π‘§ ∈ 𝐴 (rankβ€˜π‘€) βŠ† (rankβ€˜π‘§) ↔ βˆ€π‘§ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘§)))
1810, 11, 13, 14, 17cbvrabw 3466 . . . 4 {𝑀 ∈ 𝐴 ∣ βˆ€π‘§ ∈ 𝐴 (rankβ€˜π‘€) βŠ† (rankβ€˜π‘§)} = {π‘₯ ∈ 𝐴 ∣ βˆ€π‘§ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘§)}
199, 18eqtr4i 2762 . . 3 {π‘₯ ∈ 𝐴 ∣ βˆ€π‘¦ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)} = {𝑀 ∈ 𝐴 ∣ βˆ€π‘§ ∈ 𝐴 (rankβ€˜π‘€) βŠ† (rankβ€˜π‘§)}
2019eqeq1i 2736 . 2 ({π‘₯ ∈ 𝐴 ∣ βˆ€π‘¦ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)} = βˆ… ↔ {𝑀 ∈ 𝐴 ∣ βˆ€π‘§ ∈ 𝐴 (rankβ€˜π‘€) βŠ† (rankβ€˜π‘§)} = βˆ…)
211, 20bitr4i 278 1 (𝐴 = βˆ… ↔ {π‘₯ ∈ 𝐴 ∣ βˆ€π‘¦ ∈ 𝐴 (rankβ€˜π‘₯) βŠ† (rankβ€˜π‘¦)} = βˆ…)
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   = wceq 1540  β„²wnfc 2882  βˆ€wral 3060  {crab 3431   βŠ† wss 3948  βˆ…c0 4322  β€˜cfv 6543  rankcrnk 9761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-om 7859  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-r1 9762  df-rank 9763
This theorem is referenced by:  scottn0f  37342
  Copyright terms: Public domain W3C validator