Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scott0f Structured version   Visualization version   GIF version

Theorem scott0f 36064
Description: A version of scott0 9502 with nonfree variables instead of distinct variables. (Contributed by Giovanni Mascellani, 19-Aug-2018.)
Hypotheses
Ref Expression
scott0f.1 𝑦𝐴
scott0f.2 𝑥𝐴
Assertion
Ref Expression
scott0f (𝐴 = ∅ ↔ {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem scott0f
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scott0 9502 . 2 (𝐴 = ∅ ↔ {𝑤𝐴 ∣ ∀𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} = ∅)
2 scott0f.1 . . . . . 6 𝑦𝐴
3 nfcv 2904 . . . . . 6 𝑧𝐴
4 nfv 1922 . . . . . 6 𝑧(rank‘𝑥) ⊆ (rank‘𝑦)
5 nfv 1922 . . . . . 6 𝑦(rank‘𝑥) ⊆ (rank‘𝑧)
6 fveq2 6717 . . . . . . 7 (𝑦 = 𝑧 → (rank‘𝑦) = (rank‘𝑧))
76sseq2d 3933 . . . . . 6 (𝑦 = 𝑧 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑥) ⊆ (rank‘𝑧)))
82, 3, 4, 5, 7cbvralfw 3344 . . . . 5 (∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑧𝐴 (rank‘𝑥) ⊆ (rank‘𝑧))
98rabbii 3383 . . . 4 {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥𝐴 ∣ ∀𝑧𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)}
10 nfcv 2904 . . . . 5 𝑤𝐴
11 scott0f.2 . . . . 5 𝑥𝐴
12 nfv 1922 . . . . . 6 𝑥(rank‘𝑤) ⊆ (rank‘𝑧)
1311, 12nfralw 3147 . . . . 5 𝑥𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)
14 nfv 1922 . . . . 5 𝑤𝑧𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)
15 fveq2 6717 . . . . . . 7 (𝑤 = 𝑥 → (rank‘𝑤) = (rank‘𝑥))
1615sseq1d 3932 . . . . . 6 (𝑤 = 𝑥 → ((rank‘𝑤) ⊆ (rank‘𝑧) ↔ (rank‘𝑥) ⊆ (rank‘𝑧)))
1716ralbidv 3118 . . . . 5 (𝑤 = 𝑥 → (∀𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧) ↔ ∀𝑧𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)))
1810, 11, 13, 14, 17cbvrabw 3400 . . . 4 {𝑤𝐴 ∣ ∀𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} = {𝑥𝐴 ∣ ∀𝑧𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)}
199, 18eqtr4i 2768 . . 3 {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑤𝐴 ∣ ∀𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)}
2019eqeq1i 2742 . 2 ({𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅ ↔ {𝑤𝐴 ∣ ∀𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} = ∅)
211, 20bitr4i 281 1 (𝐴 = ∅ ↔ {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 209   = wceq 1543  wnfc 2884  wral 3061  {crab 3065  wss 3866  c0 4237  cfv 6380  rankcrnk 9379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-om 7645  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-r1 9380  df-rank 9381
This theorem is referenced by:  scottn0f  36065
  Copyright terms: Public domain W3C validator