Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > scott0f | Structured version Visualization version GIF version |
Description: A version of scott0 9644 with nonfree variables instead of distinct variables. (Contributed by Giovanni Mascellani, 19-Aug-2018.) |
Ref | Expression |
---|---|
scott0f.1 | ⊢ Ⅎ𝑦𝐴 |
scott0f.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
scott0f | ⊢ (𝐴 = ∅ ↔ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scott0 9644 | . 2 ⊢ (𝐴 = ∅ ↔ {𝑤 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} = ∅) | |
2 | scott0f.1 | . . . . . 6 ⊢ Ⅎ𝑦𝐴 | |
3 | nfcv 2907 | . . . . . 6 ⊢ Ⅎ𝑧𝐴 | |
4 | nfv 1917 | . . . . . 6 ⊢ Ⅎ𝑧(rank‘𝑥) ⊆ (rank‘𝑦) | |
5 | nfv 1917 | . . . . . 6 ⊢ Ⅎ𝑦(rank‘𝑥) ⊆ (rank‘𝑧) | |
6 | fveq2 6774 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → (rank‘𝑦) = (rank‘𝑧)) | |
7 | 6 | sseq2d 3953 | . . . . . 6 ⊢ (𝑦 = 𝑧 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑥) ⊆ (rank‘𝑧))) |
8 | 2, 3, 4, 5, 7 | cbvralfw 3368 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)) |
9 | 8 | rabbii 3408 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)} |
10 | nfcv 2907 | . . . . 5 ⊢ Ⅎ𝑤𝐴 | |
11 | scott0f.2 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
12 | nfv 1917 | . . . . . 6 ⊢ Ⅎ𝑥(rank‘𝑤) ⊆ (rank‘𝑧) | |
13 | 11, 12 | nfralw 3151 | . . . . 5 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧) |
14 | nfv 1917 | . . . . 5 ⊢ Ⅎ𝑤∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧) | |
15 | fveq2 6774 | . . . . . . 7 ⊢ (𝑤 = 𝑥 → (rank‘𝑤) = (rank‘𝑥)) | |
16 | 15 | sseq1d 3952 | . . . . . 6 ⊢ (𝑤 = 𝑥 → ((rank‘𝑤) ⊆ (rank‘𝑧) ↔ (rank‘𝑥) ⊆ (rank‘𝑧))) |
17 | 16 | ralbidv 3112 | . . . . 5 ⊢ (𝑤 = 𝑥 → (∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧) ↔ ∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧))) |
18 | 10, 11, 13, 14, 17 | cbvrabw 3424 | . . . 4 ⊢ {𝑤 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} = {𝑥 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)} |
19 | 9, 18 | eqtr4i 2769 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑤 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} |
20 | 19 | eqeq1i 2743 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅ ↔ {𝑤 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} = ∅) |
21 | 1, 20 | bitr4i 277 | 1 ⊢ (𝐴 = ∅ ↔ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 Ⅎwnfc 2887 ∀wral 3064 {crab 3068 ⊆ wss 3887 ∅c0 4256 ‘cfv 6433 rankcrnk 9521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-r1 9522 df-rank 9523 |
This theorem is referenced by: scottn0f 36328 |
Copyright terms: Public domain | W3C validator |