Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scott0f Structured version   Visualization version   GIF version

Theorem scott0f 36254
Description: A version of scott0 9575 with nonfree variables instead of distinct variables. (Contributed by Giovanni Mascellani, 19-Aug-2018.)
Hypotheses
Ref Expression
scott0f.1 𝑦𝐴
scott0f.2 𝑥𝐴
Assertion
Ref Expression
scott0f (𝐴 = ∅ ↔ {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem scott0f
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scott0 9575 . 2 (𝐴 = ∅ ↔ {𝑤𝐴 ∣ ∀𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} = ∅)
2 scott0f.1 . . . . . 6 𝑦𝐴
3 nfcv 2906 . . . . . 6 𝑧𝐴
4 nfv 1918 . . . . . 6 𝑧(rank‘𝑥) ⊆ (rank‘𝑦)
5 nfv 1918 . . . . . 6 𝑦(rank‘𝑥) ⊆ (rank‘𝑧)
6 fveq2 6756 . . . . . . 7 (𝑦 = 𝑧 → (rank‘𝑦) = (rank‘𝑧))
76sseq2d 3949 . . . . . 6 (𝑦 = 𝑧 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑥) ⊆ (rank‘𝑧)))
82, 3, 4, 5, 7cbvralfw 3358 . . . . 5 (∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑧𝐴 (rank‘𝑥) ⊆ (rank‘𝑧))
98rabbii 3397 . . . 4 {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥𝐴 ∣ ∀𝑧𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)}
10 nfcv 2906 . . . . 5 𝑤𝐴
11 scott0f.2 . . . . 5 𝑥𝐴
12 nfv 1918 . . . . . 6 𝑥(rank‘𝑤) ⊆ (rank‘𝑧)
1311, 12nfralw 3149 . . . . 5 𝑥𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)
14 nfv 1918 . . . . 5 𝑤𝑧𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)
15 fveq2 6756 . . . . . . 7 (𝑤 = 𝑥 → (rank‘𝑤) = (rank‘𝑥))
1615sseq1d 3948 . . . . . 6 (𝑤 = 𝑥 → ((rank‘𝑤) ⊆ (rank‘𝑧) ↔ (rank‘𝑥) ⊆ (rank‘𝑧)))
1716ralbidv 3120 . . . . 5 (𝑤 = 𝑥 → (∀𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧) ↔ ∀𝑧𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)))
1810, 11, 13, 14, 17cbvrabw 3414 . . . 4 {𝑤𝐴 ∣ ∀𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} = {𝑥𝐴 ∣ ∀𝑧𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)}
199, 18eqtr4i 2769 . . 3 {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑤𝐴 ∣ ∀𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)}
2019eqeq1i 2743 . 2 ({𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅ ↔ {𝑤𝐴 ∣ ∀𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} = ∅)
211, 20bitr4i 277 1 (𝐴 = ∅ ↔ {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wnfc 2886  wral 3063  {crab 3067  wss 3883  c0 4253  cfv 6418  rankcrnk 9452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-r1 9453  df-rank 9454
This theorem is referenced by:  scottn0f  36255
  Copyright terms: Public domain W3C validator