Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scott0f Structured version   Visualization version   GIF version

Theorem scott0f 38208
Description: A version of scott0 9776 with nonfree variables instead of distinct variables. (Contributed by Giovanni Mascellani, 19-Aug-2018.)
Hypotheses
Ref Expression
scott0f.1 𝑦𝐴
scott0f.2 𝑥𝐴
Assertion
Ref Expression
scott0f (𝐴 = ∅ ↔ {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem scott0f
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scott0 9776 . 2 (𝐴 = ∅ ↔ {𝑤𝐴 ∣ ∀𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} = ∅)
2 scott0f.1 . . . . . 6 𝑦𝐴
3 nfcv 2894 . . . . . 6 𝑧𝐴
4 nfv 1915 . . . . . 6 𝑧(rank‘𝑥) ⊆ (rank‘𝑦)
5 nfv 1915 . . . . . 6 𝑦(rank‘𝑥) ⊆ (rank‘𝑧)
6 fveq2 6822 . . . . . . 7 (𝑦 = 𝑧 → (rank‘𝑦) = (rank‘𝑧))
76sseq2d 3967 . . . . . 6 (𝑦 = 𝑧 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑥) ⊆ (rank‘𝑧)))
82, 3, 4, 5, 7cbvralfw 3272 . . . . 5 (∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑧𝐴 (rank‘𝑥) ⊆ (rank‘𝑧))
98rabbii 3400 . . . 4 {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥𝐴 ∣ ∀𝑧𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)}
10 nfcv 2894 . . . . 5 𝑤𝐴
11 scott0f.2 . . . . 5 𝑥𝐴
12 nfv 1915 . . . . . 6 𝑥(rank‘𝑤) ⊆ (rank‘𝑧)
1311, 12nfralw 3279 . . . . 5 𝑥𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)
14 nfv 1915 . . . . 5 𝑤𝑧𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)
15 fveq2 6822 . . . . . . 7 (𝑤 = 𝑥 → (rank‘𝑤) = (rank‘𝑥))
1615sseq1d 3966 . . . . . 6 (𝑤 = 𝑥 → ((rank‘𝑤) ⊆ (rank‘𝑧) ↔ (rank‘𝑥) ⊆ (rank‘𝑧)))
1716ralbidv 3155 . . . . 5 (𝑤 = 𝑥 → (∀𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧) ↔ ∀𝑧𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)))
1810, 11, 13, 14, 17cbvrabw 3430 . . . 4 {𝑤𝐴 ∣ ∀𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} = {𝑥𝐴 ∣ ∀𝑧𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)}
199, 18eqtr4i 2757 . . 3 {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑤𝐴 ∣ ∀𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)}
2019eqeq1i 2736 . 2 ({𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅ ↔ {𝑤𝐴 ∣ ∀𝑧𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} = ∅)
211, 20bitr4i 278 1 (𝐴 = ∅ ↔ {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wnfc 2879  wral 3047  {crab 3395  wss 3902  c0 4283  cfv 6481  rankcrnk 9653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-r1 9654  df-rank 9655
This theorem is referenced by:  scottn0f  38209
  Copyright terms: Public domain W3C validator