Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > scott0f | Structured version Visualization version GIF version |
Description: A version of scott0 9748 with nonfree variables instead of distinct variables. (Contributed by Giovanni Mascellani, 19-Aug-2018.) |
Ref | Expression |
---|---|
scott0f.1 | ⊢ Ⅎ𝑦𝐴 |
scott0f.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
scott0f | ⊢ (𝐴 = ∅ ↔ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scott0 9748 | . 2 ⊢ (𝐴 = ∅ ↔ {𝑤 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} = ∅) | |
2 | scott0f.1 | . . . . . 6 ⊢ Ⅎ𝑦𝐴 | |
3 | nfcv 2905 | . . . . . 6 ⊢ Ⅎ𝑧𝐴 | |
4 | nfv 1917 | . . . . . 6 ⊢ Ⅎ𝑧(rank‘𝑥) ⊆ (rank‘𝑦) | |
5 | nfv 1917 | . . . . . 6 ⊢ Ⅎ𝑦(rank‘𝑥) ⊆ (rank‘𝑧) | |
6 | fveq2 6830 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → (rank‘𝑦) = (rank‘𝑧)) | |
7 | 6 | sseq2d 3968 | . . . . . 6 ⊢ (𝑦 = 𝑧 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑥) ⊆ (rank‘𝑧))) |
8 | 2, 3, 4, 5, 7 | cbvralfw 3284 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)) |
9 | 8 | rabbii 3410 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)} |
10 | nfcv 2905 | . . . . 5 ⊢ Ⅎ𝑤𝐴 | |
11 | scott0f.2 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
12 | nfv 1917 | . . . . . 6 ⊢ Ⅎ𝑥(rank‘𝑤) ⊆ (rank‘𝑧) | |
13 | 11, 12 | nfralw 3291 | . . . . 5 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧) |
14 | nfv 1917 | . . . . 5 ⊢ Ⅎ𝑤∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧) | |
15 | fveq2 6830 | . . . . . . 7 ⊢ (𝑤 = 𝑥 → (rank‘𝑤) = (rank‘𝑥)) | |
16 | 15 | sseq1d 3967 | . . . . . 6 ⊢ (𝑤 = 𝑥 → ((rank‘𝑤) ⊆ (rank‘𝑧) ↔ (rank‘𝑥) ⊆ (rank‘𝑧))) |
17 | 16 | ralbidv 3171 | . . . . 5 ⊢ (𝑤 = 𝑥 → (∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧) ↔ ∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧))) |
18 | 10, 11, 13, 14, 17 | cbvrabw 3436 | . . . 4 ⊢ {𝑤 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} = {𝑥 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)} |
19 | 9, 18 | eqtr4i 2768 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑤 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} |
20 | 19 | eqeq1i 2742 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅ ↔ {𝑤 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} = ∅) |
21 | 1, 20 | bitr4i 278 | 1 ⊢ (𝐴 = ∅ ↔ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 Ⅎwnfc 2885 ∀wral 3062 {crab 3404 ⊆ wss 3902 ∅c0 4274 ‘cfv 6484 rankcrnk 9625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-int 4900 df-iun 4948 df-iin 4949 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-ov 7345 df-om 7786 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-r1 9626 df-rank 9627 |
This theorem is referenced by: scottn0f 36482 |
Copyright terms: Public domain | W3C validator |