| Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > scott0f | Structured version Visualization version GIF version | ||
| Description: A version of scott0 9909 with nonfree variables instead of distinct variables. (Contributed by Giovanni Mascellani, 19-Aug-2018.) |
| Ref | Expression |
|---|---|
| scott0f.1 | ⊢ Ⅎ𝑦𝐴 |
| scott0f.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| scott0f | ⊢ (𝐴 = ∅ ↔ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scott0 9909 | . 2 ⊢ (𝐴 = ∅ ↔ {𝑤 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} = ∅) | |
| 2 | scott0f.1 | . . . . . 6 ⊢ Ⅎ𝑦𝐴 | |
| 3 | nfcv 2897 | . . . . . 6 ⊢ Ⅎ𝑧𝐴 | |
| 4 | nfv 1913 | . . . . . 6 ⊢ Ⅎ𝑧(rank‘𝑥) ⊆ (rank‘𝑦) | |
| 5 | nfv 1913 | . . . . . 6 ⊢ Ⅎ𝑦(rank‘𝑥) ⊆ (rank‘𝑧) | |
| 6 | fveq2 6887 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → (rank‘𝑦) = (rank‘𝑧)) | |
| 7 | 6 | sseq2d 3998 | . . . . . 6 ⊢ (𝑦 = 𝑧 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑥) ⊆ (rank‘𝑧))) |
| 8 | 2, 3, 4, 5, 7 | cbvralfw 3288 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)) |
| 9 | 8 | rabbii 3426 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)} |
| 10 | nfcv 2897 | . . . . 5 ⊢ Ⅎ𝑤𝐴 | |
| 11 | scott0f.2 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 12 | nfv 1913 | . . . . . 6 ⊢ Ⅎ𝑥(rank‘𝑤) ⊆ (rank‘𝑧) | |
| 13 | 11, 12 | nfralw 3295 | . . . . 5 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧) |
| 14 | nfv 1913 | . . . . 5 ⊢ Ⅎ𝑤∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧) | |
| 15 | fveq2 6887 | . . . . . . 7 ⊢ (𝑤 = 𝑥 → (rank‘𝑤) = (rank‘𝑥)) | |
| 16 | 15 | sseq1d 3997 | . . . . . 6 ⊢ (𝑤 = 𝑥 → ((rank‘𝑤) ⊆ (rank‘𝑧) ↔ (rank‘𝑥) ⊆ (rank‘𝑧))) |
| 17 | 16 | ralbidv 3165 | . . . . 5 ⊢ (𝑤 = 𝑥 → (∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧) ↔ ∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧))) |
| 18 | 10, 11, 13, 14, 17 | cbvrabw 3457 | . . . 4 ⊢ {𝑤 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} = {𝑥 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)} |
| 19 | 9, 18 | eqtr4i 2760 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑤 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} |
| 20 | 19 | eqeq1i 2739 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅ ↔ {𝑤 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} = ∅) |
| 21 | 1, 20 | bitr4i 278 | 1 ⊢ (𝐴 = ∅ ↔ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 Ⅎwnfc 2882 ∀wral 3050 {crab 3420 ⊆ wss 3933 ∅c0 4315 ‘cfv 6542 rankcrnk 9786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-iin 4976 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-om 7871 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-r1 9787 df-rank 9788 |
| This theorem is referenced by: scottn0f 38118 |
| Copyright terms: Public domain | W3C validator |