Step | Hyp | Ref
| Expression |
1 | | scott0 9884 |
. 2
β’ (π΄ = β
β {π€ β π΄ β£ βπ§ β π΄ (rankβπ€) β (rankβπ§)} = β
) |
2 | | scott0f.1 |
. . . . . 6
β’
β²π¦π΄ |
3 | | nfcv 2902 |
. . . . . 6
β’
β²π§π΄ |
4 | | nfv 1916 |
. . . . . 6
β’
β²π§(rankβπ₯) β (rankβπ¦) |
5 | | nfv 1916 |
. . . . . 6
β’
β²π¦(rankβπ₯) β (rankβπ§) |
6 | | fveq2 6891 |
. . . . . . 7
β’ (π¦ = π§ β (rankβπ¦) = (rankβπ§)) |
7 | 6 | sseq2d 4014 |
. . . . . 6
β’ (π¦ = π§ β ((rankβπ₯) β (rankβπ¦) β (rankβπ₯) β (rankβπ§))) |
8 | 2, 3, 4, 5, 7 | cbvralfw 3300 |
. . . . 5
β’
(βπ¦ β
π΄ (rankβπ₯) β (rankβπ¦) β βπ§ β π΄ (rankβπ₯) β (rankβπ§)) |
9 | 8 | rabbii 3437 |
. . . 4
β’ {π₯ β π΄ β£ βπ¦ β π΄ (rankβπ₯) β (rankβπ¦)} = {π₯ β π΄ β£ βπ§ β π΄ (rankβπ₯) β (rankβπ§)} |
10 | | nfcv 2902 |
. . . . 5
β’
β²π€π΄ |
11 | | scott0f.2 |
. . . . 5
β’
β²π₯π΄ |
12 | | nfv 1916 |
. . . . . 6
β’
β²π₯(rankβπ€) β (rankβπ§) |
13 | 11, 12 | nfralw 3307 |
. . . . 5
β’
β²π₯βπ§ β π΄ (rankβπ€) β (rankβπ§) |
14 | | nfv 1916 |
. . . . 5
β’
β²π€βπ§ β π΄ (rankβπ₯) β (rankβπ§) |
15 | | fveq2 6891 |
. . . . . . 7
β’ (π€ = π₯ β (rankβπ€) = (rankβπ₯)) |
16 | 15 | sseq1d 4013 |
. . . . . 6
β’ (π€ = π₯ β ((rankβπ€) β (rankβπ§) β (rankβπ₯) β (rankβπ§))) |
17 | 16 | ralbidv 3176 |
. . . . 5
β’ (π€ = π₯ β (βπ§ β π΄ (rankβπ€) β (rankβπ§) β βπ§ β π΄ (rankβπ₯) β (rankβπ§))) |
18 | 10, 11, 13, 14, 17 | cbvrabw 3466 |
. . . 4
β’ {π€ β π΄ β£ βπ§ β π΄ (rankβπ€) β (rankβπ§)} = {π₯ β π΄ β£ βπ§ β π΄ (rankβπ₯) β (rankβπ§)} |
19 | 9, 18 | eqtr4i 2762 |
. . 3
β’ {π₯ β π΄ β£ βπ¦ β π΄ (rankβπ₯) β (rankβπ¦)} = {π€ β π΄ β£ βπ§ β π΄ (rankβπ€) β (rankβπ§)} |
20 | 19 | eqeq1i 2736 |
. 2
β’ ({π₯ β π΄ β£ βπ¦ β π΄ (rankβπ₯) β (rankβπ¦)} = β
β {π€ β π΄ β£ βπ§ β π΄ (rankβπ€) β (rankβπ§)} = β
) |
21 | 1, 20 | bitr4i 278 |
1
β’ (π΄ = β
β {π₯ β π΄ β£ βπ¦ β π΄ (rankβπ₯) β (rankβπ¦)} = β
) |