Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ffnfvf | Structured version Visualization version GIF version |
Description: A function maps to a class to which all values belong. This version of ffnfv 6986 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 28-Sep-2006.) |
Ref | Expression |
---|---|
ffnfvf.1 | ⊢ Ⅎ𝑥𝐴 |
ffnfvf.2 | ⊢ Ⅎ𝑥𝐵 |
ffnfvf.3 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
ffnfvf | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffnfv 6986 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) ∈ 𝐵)) | |
2 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑧𝐴 | |
3 | ffnfvf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | ffnfvf.3 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
5 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑥𝑧 | |
6 | 4, 5 | nffv 6778 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
7 | ffnfvf.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
8 | 6, 7 | nfel 2922 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑧) ∈ 𝐵 |
9 | nfv 1920 | . . . 4 ⊢ Ⅎ𝑧(𝐹‘𝑥) ∈ 𝐵 | |
10 | fveq2 6768 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
11 | 10 | eleq1d 2824 | . . . 4 ⊢ (𝑧 = 𝑥 → ((𝐹‘𝑧) ∈ 𝐵 ↔ (𝐹‘𝑥) ∈ 𝐵)) |
12 | 2, 3, 8, 9, 11 | cbvralfw 3366 | . . 3 ⊢ (∀𝑧 ∈ 𝐴 (𝐹‘𝑧) ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
13 | 12 | anbi2i 622 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) ∈ 𝐵) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
14 | 1, 13 | bitri 274 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2109 Ⅎwnfc 2888 ∀wral 3065 Fn wfn 6425 ⟶wf 6426 ‘cfv 6430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fv 6438 |
This theorem is referenced by: ixpf 8682 fconst7 42765 |
Copyright terms: Public domain | W3C validator |