MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffnfvf Structured version   Visualization version   GIF version

Theorem ffnfvf 7030
Description: A function maps to a class to which all values belong. This version of ffnfv 7029 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 28-Sep-2006.)
Hypotheses
Ref Expression
ffnfvf.1 𝑥𝐴
ffnfvf.2 𝑥𝐵
ffnfvf.3 𝑥𝐹
Assertion
Ref Expression
ffnfvf (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))

Proof of Theorem ffnfvf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ffnfv 7029 . 2 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) ∈ 𝐵))
2 nfcv 2905 . . . 4 𝑧𝐴
3 ffnfvf.1 . . . 4 𝑥𝐴
4 ffnfvf.3 . . . . . 6 𝑥𝐹
5 nfcv 2905 . . . . . 6 𝑥𝑧
64, 5nffv 6819 . . . . 5 𝑥(𝐹𝑧)
7 ffnfvf.2 . . . . 5 𝑥𝐵
86, 7nfel 2919 . . . 4 𝑥(𝐹𝑧) ∈ 𝐵
9 nfv 1916 . . . 4 𝑧(𝐹𝑥) ∈ 𝐵
10 fveq2 6809 . . . . 5 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
1110eleq1d 2822 . . . 4 (𝑧 = 𝑥 → ((𝐹𝑧) ∈ 𝐵 ↔ (𝐹𝑥) ∈ 𝐵))
122, 3, 8, 9, 11cbvralfw 3284 . . 3 (∀𝑧𝐴 (𝐹𝑧) ∈ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)
1312anbi2i 623 . 2 ((𝐹 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) ∈ 𝐵) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
141, 13bitri 274 1 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wcel 2105  wnfc 2885  wral 3062   Fn wfn 6458  wf 6459  cfv 6463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5236  ax-nul 5243  ax-pr 5365
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-br 5086  df-opab 5148  df-mpt 5169  df-id 5505  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-fv 6471
This theorem is referenced by:  ixpf  8754  fconst7  43048
  Copyright terms: Public domain W3C validator