| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ffnfvf | Structured version Visualization version GIF version | ||
| Description: A function maps to a class to which all values belong. This version of ffnfv 7073 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 28-Sep-2006.) |
| Ref | Expression |
|---|---|
| ffnfvf.1 | ⊢ Ⅎ𝑥𝐴 |
| ffnfvf.2 | ⊢ Ⅎ𝑥𝐵 |
| ffnfvf.3 | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| ffnfvf | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffnfv 7073 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) ∈ 𝐵)) | |
| 2 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑧𝐴 | |
| 3 | ffnfvf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | ffnfvf.3 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
| 5 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑥𝑧 | |
| 6 | 4, 5 | nffv 6850 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
| 7 | ffnfvf.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 8 | 6, 7 | nfel 2906 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑧) ∈ 𝐵 |
| 9 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑧(𝐹‘𝑥) ∈ 𝐵 | |
| 10 | fveq2 6840 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
| 11 | 10 | eleq1d 2813 | . . . 4 ⊢ (𝑧 = 𝑥 → ((𝐹‘𝑧) ∈ 𝐵 ↔ (𝐹‘𝑥) ∈ 𝐵)) |
| 12 | 2, 3, 8, 9, 11 | cbvralfw 3276 | . . 3 ⊢ (∀𝑧 ∈ 𝐴 (𝐹‘𝑧) ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
| 13 | 12 | anbi2i 623 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) ∈ 𝐵) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| 14 | 1, 13 | bitri 275 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Ⅎwnfc 2876 ∀wral 3044 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 |
| This theorem is referenced by: ixpf 8870 fconst7 45251 |
| Copyright terms: Public domain | W3C validator |