MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffnfvf Structured version   Visualization version   GIF version

Theorem ffnfvf 7154
Description: A function maps to a class to which all values belong. This version of ffnfv 7153 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 28-Sep-2006.)
Hypotheses
Ref Expression
ffnfvf.1 𝑥𝐴
ffnfvf.2 𝑥𝐵
ffnfvf.3 𝑥𝐹
Assertion
Ref Expression
ffnfvf (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))

Proof of Theorem ffnfvf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ffnfv 7153 . 2 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) ∈ 𝐵))
2 nfcv 2908 . . . 4 𝑧𝐴
3 ffnfvf.1 . . . 4 𝑥𝐴
4 ffnfvf.3 . . . . . 6 𝑥𝐹
5 nfcv 2908 . . . . . 6 𝑥𝑧
64, 5nffv 6930 . . . . 5 𝑥(𝐹𝑧)
7 ffnfvf.2 . . . . 5 𝑥𝐵
86, 7nfel 2923 . . . 4 𝑥(𝐹𝑧) ∈ 𝐵
9 nfv 1913 . . . 4 𝑧(𝐹𝑥) ∈ 𝐵
10 fveq2 6920 . . . . 5 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
1110eleq1d 2829 . . . 4 (𝑧 = 𝑥 → ((𝐹𝑧) ∈ 𝐵 ↔ (𝐹𝑥) ∈ 𝐵))
122, 3, 8, 9, 11cbvralfw 3310 . . 3 (∀𝑧𝐴 (𝐹𝑧) ∈ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)
1312anbi2i 622 . 2 ((𝐹 Fn 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) ∈ 𝐵) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
141, 13bitri 275 1 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2108  wnfc 2893  wral 3067   Fn wfn 6568  wf 6569  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581
This theorem is referenced by:  ixpf  8978  fconst7  45174
  Copyright terms: Public domain W3C validator