| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ffnfvf | Structured version Visualization version GIF version | ||
| Description: A function maps to a class to which all values belong. This version of ffnfv 7052 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 28-Sep-2006.) |
| Ref | Expression |
|---|---|
| ffnfvf.1 | ⊢ Ⅎ𝑥𝐴 |
| ffnfvf.2 | ⊢ Ⅎ𝑥𝐵 |
| ffnfvf.3 | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| ffnfvf | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffnfv 7052 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) ∈ 𝐵)) | |
| 2 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑧𝐴 | |
| 3 | ffnfvf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | ffnfvf.3 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
| 5 | nfcv 2894 | . . . . . 6 ⊢ Ⅎ𝑥𝑧 | |
| 6 | 4, 5 | nffv 6832 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
| 7 | ffnfvf.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 8 | 6, 7 | nfel 2909 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑧) ∈ 𝐵 |
| 9 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑧(𝐹‘𝑥) ∈ 𝐵 | |
| 10 | fveq2 6822 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
| 11 | 10 | eleq1d 2816 | . . . 4 ⊢ (𝑧 = 𝑥 → ((𝐹‘𝑧) ∈ 𝐵 ↔ (𝐹‘𝑥) ∈ 𝐵)) |
| 12 | 2, 3, 8, 9, 11 | cbvralfw 3272 | . . 3 ⊢ (∀𝑧 ∈ 𝐴 (𝐹‘𝑧) ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
| 13 | 12 | anbi2i 623 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) ∈ 𝐵) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| 14 | 1, 13 | bitri 275 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2111 Ⅎwnfc 2879 ∀wral 3047 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 |
| This theorem is referenced by: ixpf 8844 fconst7v 32603 fconst7 45360 |
| Copyright terms: Public domain | W3C validator |