Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ffnfvf | Structured version Visualization version GIF version |
Description: A function maps to a class to which all values belong. This version of ffnfv 7029 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 28-Sep-2006.) |
Ref | Expression |
---|---|
ffnfvf.1 | ⊢ Ⅎ𝑥𝐴 |
ffnfvf.2 | ⊢ Ⅎ𝑥𝐵 |
ffnfvf.3 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
ffnfvf | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffnfv 7029 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) ∈ 𝐵)) | |
2 | nfcv 2905 | . . . 4 ⊢ Ⅎ𝑧𝐴 | |
3 | ffnfvf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | ffnfvf.3 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
5 | nfcv 2905 | . . . . . 6 ⊢ Ⅎ𝑥𝑧 | |
6 | 4, 5 | nffv 6819 | . . . . 5 ⊢ Ⅎ𝑥(𝐹‘𝑧) |
7 | ffnfvf.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
8 | 6, 7 | nfel 2919 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑧) ∈ 𝐵 |
9 | nfv 1916 | . . . 4 ⊢ Ⅎ𝑧(𝐹‘𝑥) ∈ 𝐵 | |
10 | fveq2 6809 | . . . . 5 ⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) | |
11 | 10 | eleq1d 2822 | . . . 4 ⊢ (𝑧 = 𝑥 → ((𝐹‘𝑧) ∈ 𝐵 ↔ (𝐹‘𝑥) ∈ 𝐵)) |
12 | 2, 3, 8, 9, 11 | cbvralfw 3284 | . . 3 ⊢ (∀𝑧 ∈ 𝐴 (𝐹‘𝑧) ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) |
13 | 12 | anbi2i 623 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑧 ∈ 𝐴 (𝐹‘𝑧) ∈ 𝐵) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
14 | 1, 13 | bitri 274 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2105 Ⅎwnfc 2885 ∀wral 3062 Fn wfn 6458 ⟶wf 6459 ‘cfv 6463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pr 5365 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-br 5086 df-opab 5148 df-mpt 5169 df-id 5505 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-fv 6471 |
This theorem is referenced by: ixpf 8754 fconst7 43048 |
Copyright terms: Public domain | W3C validator |