Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31sde Structured version   Visualization version   GIF version

Theorem cdleme31sde 38326
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 31-Mar-2013.)
Hypotheses
Ref Expression
cdleme31sde.c 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme31sde.e 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
cdleme31sde.x 𝑌 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme31sde.z 𝑍 = ((𝑃 𝑄) (𝑌 ((𝑅 𝑆) 𝑊)))
Assertion
Ref Expression
cdleme31sde ((𝑅𝐴𝑆𝐴) → 𝑅 / 𝑠𝑆 / 𝑡𝐸 = 𝑍)
Distinct variable groups:   𝑡,𝑠,𝐴   ,𝑠,𝑡   ,𝑠,𝑡   𝑃,𝑠,𝑡   𝑄,𝑠,𝑡   𝑅,𝑠   𝑆,𝑠,𝑡   𝑊,𝑠,𝑡   𝑌,𝑠,𝑡
Allowed substitution hints:   𝐷(𝑡,𝑠)   𝑅(𝑡)   𝑈(𝑡,𝑠)   𝐸(𝑡,𝑠)   𝑍(𝑡,𝑠)

Proof of Theorem cdleme31sde
StepHypRef Expression
1 cdleme31sde.e . . . . 5 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
21csbeq2i 3836 . . . 4 𝑆 / 𝑡𝐸 = 𝑆 / 𝑡((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
3 nfcvd 2907 . . . . 5 (𝑆𝐴𝑡((𝑃 𝑄) (𝑌 ((𝑠 𝑆) 𝑊))))
4 oveq1 7262 . . . . . . . . 9 (𝑡 = 𝑆 → (𝑡 𝑈) = (𝑆 𝑈))
5 oveq2 7263 . . . . . . . . . . 11 (𝑡 = 𝑆 → (𝑃 𝑡) = (𝑃 𝑆))
65oveq1d 7270 . . . . . . . . . 10 (𝑡 = 𝑆 → ((𝑃 𝑡) 𝑊) = ((𝑃 𝑆) 𝑊))
76oveq2d 7271 . . . . . . . . 9 (𝑡 = 𝑆 → (𝑄 ((𝑃 𝑡) 𝑊)) = (𝑄 ((𝑃 𝑆) 𝑊)))
84, 7oveq12d 7273 . . . . . . . 8 (𝑡 = 𝑆 → ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊))) = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊))))
9 cdleme31sde.c . . . . . . . 8 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
10 cdleme31sde.x . . . . . . . 8 𝑌 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
118, 9, 103eqtr4g 2804 . . . . . . 7 (𝑡 = 𝑆𝐷 = 𝑌)
12 oveq2 7263 . . . . . . . 8 (𝑡 = 𝑆 → (𝑠 𝑡) = (𝑠 𝑆))
1312oveq1d 7270 . . . . . . 7 (𝑡 = 𝑆 → ((𝑠 𝑡) 𝑊) = ((𝑠 𝑆) 𝑊))
1411, 13oveq12d 7273 . . . . . 6 (𝑡 = 𝑆 → (𝐷 ((𝑠 𝑡) 𝑊)) = (𝑌 ((𝑠 𝑆) 𝑊)))
1514oveq2d 7271 . . . . 5 (𝑡 = 𝑆 → ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊))) = ((𝑃 𝑄) (𝑌 ((𝑠 𝑆) 𝑊))))
163, 15csbiegf 3862 . . . 4 (𝑆𝐴𝑆 / 𝑡((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊))) = ((𝑃 𝑄) (𝑌 ((𝑠 𝑆) 𝑊))))
172, 16syl5eq 2791 . . 3 (𝑆𝐴𝑆 / 𝑡𝐸 = ((𝑃 𝑄) (𝑌 ((𝑠 𝑆) 𝑊))))
1817csbeq2dv 3835 . 2 (𝑆𝐴𝑅 / 𝑠𝑆 / 𝑡𝐸 = 𝑅 / 𝑠((𝑃 𝑄) (𝑌 ((𝑠 𝑆) 𝑊))))
19 eqid 2738 . . 3 ((𝑃 𝑄) (𝑌 ((𝑠 𝑆) 𝑊))) = ((𝑃 𝑄) (𝑌 ((𝑠 𝑆) 𝑊)))
20 cdleme31sde.z . . 3 𝑍 = ((𝑃 𝑄) (𝑌 ((𝑅 𝑆) 𝑊)))
2119, 20cdleme31se 38323 . 2 (𝑅𝐴𝑅 / 𝑠((𝑃 𝑄) (𝑌 ((𝑠 𝑆) 𝑊))) = 𝑍)
2218, 21sylan9eqr 2801 1 ((𝑅𝐴𝑆𝐴) → 𝑅 / 𝑠𝑆 / 𝑡𝐸 = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  csb 3828  (class class class)co 7255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258
This theorem is referenced by:  cdlemefs44  38367  cdlemefs45ee  38371  cdleme17d2  38436
  Copyright terms: Public domain W3C validator