Proof of Theorem cdleme31sde
Step | Hyp | Ref
| Expression |
1 | | cdleme31sde.e |
. . . . 5
⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
2 | 1 | csbeq2i 3836 |
. . . 4
⊢
⦋𝑆 /
𝑡⦌𝐸 = ⦋𝑆 / 𝑡⦌((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
3 | | nfcvd 2907 |
. . . . 5
⊢ (𝑆 ∈ 𝐴 → Ⅎ𝑡((𝑃 ∨ 𝑄) ∧ (𝑌 ∨ ((𝑠 ∨ 𝑆) ∧ 𝑊)))) |
4 | | oveq1 7262 |
. . . . . . . . 9
⊢ (𝑡 = 𝑆 → (𝑡 ∨ 𝑈) = (𝑆 ∨ 𝑈)) |
5 | | oveq2 7263 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑆 → (𝑃 ∨ 𝑡) = (𝑃 ∨ 𝑆)) |
6 | 5 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑆 → ((𝑃 ∨ 𝑡) ∧ 𝑊) = ((𝑃 ∨ 𝑆) ∧ 𝑊)) |
7 | 6 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝑡 = 𝑆 → (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊)) = (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) |
8 | 4, 7 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝑡 = 𝑆 → ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊)))) |
9 | | cdleme31sde.c |
. . . . . . . 8
⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
10 | | cdleme31sde.x |
. . . . . . . 8
⊢ 𝑌 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) |
11 | 8, 9, 10 | 3eqtr4g 2804 |
. . . . . . 7
⊢ (𝑡 = 𝑆 → 𝐷 = 𝑌) |
12 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑡 = 𝑆 → (𝑠 ∨ 𝑡) = (𝑠 ∨ 𝑆)) |
13 | 12 | oveq1d 7270 |
. . . . . . 7
⊢ (𝑡 = 𝑆 → ((𝑠 ∨ 𝑡) ∧ 𝑊) = ((𝑠 ∨ 𝑆) ∧ 𝑊)) |
14 | 11, 13 | oveq12d 7273 |
. . . . . 6
⊢ (𝑡 = 𝑆 → (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊)) = (𝑌 ∨ ((𝑠 ∨ 𝑆) ∧ 𝑊))) |
15 | 14 | oveq2d 7271 |
. . . . 5
⊢ (𝑡 = 𝑆 → ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) = ((𝑃 ∨ 𝑄) ∧ (𝑌 ∨ ((𝑠 ∨ 𝑆) ∧ 𝑊)))) |
16 | 3, 15 | csbiegf 3862 |
. . . 4
⊢ (𝑆 ∈ 𝐴 → ⦋𝑆 / 𝑡⦌((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) = ((𝑃 ∨ 𝑄) ∧ (𝑌 ∨ ((𝑠 ∨ 𝑆) ∧ 𝑊)))) |
17 | 2, 16 | syl5eq 2791 |
. . 3
⊢ (𝑆 ∈ 𝐴 → ⦋𝑆 / 𝑡⦌𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝑌 ∨ ((𝑠 ∨ 𝑆) ∧ 𝑊)))) |
18 | 17 | csbeq2dv 3835 |
. 2
⊢ (𝑆 ∈ 𝐴 → ⦋𝑅 / 𝑠⦌⦋𝑆 / 𝑡⦌𝐸 = ⦋𝑅 / 𝑠⦌((𝑃 ∨ 𝑄) ∧ (𝑌 ∨ ((𝑠 ∨ 𝑆) ∧ 𝑊)))) |
19 | | eqid 2738 |
. . 3
⊢ ((𝑃 ∨ 𝑄) ∧ (𝑌 ∨ ((𝑠 ∨ 𝑆) ∧ 𝑊))) = ((𝑃 ∨ 𝑄) ∧ (𝑌 ∨ ((𝑠 ∨ 𝑆) ∧ 𝑊))) |
20 | | cdleme31sde.z |
. . 3
⊢ 𝑍 = ((𝑃 ∨ 𝑄) ∧ (𝑌 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) |
21 | 19, 20 | cdleme31se 38323 |
. 2
⊢ (𝑅 ∈ 𝐴 → ⦋𝑅 / 𝑠⦌((𝑃 ∨ 𝑄) ∧ (𝑌 ∨ ((𝑠 ∨ 𝑆) ∧ 𝑊))) = 𝑍) |
22 | 18, 21 | sylan9eqr 2801 |
1
⊢ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → ⦋𝑅 / 𝑠⦌⦋𝑆 / 𝑡⦌𝐸 = 𝑍) |