Proof of Theorem cdlemeg46ngfr
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cdlemef46g.j | . . . . 5
⊢  ∨ =
(join‘𝐾) | 
| 2 |  | cdlemef46g.a | . . . . 5
⊢ 𝐴 = (Atoms‘𝐾) | 
| 3 | 1, 2 | cdleme46f2g2 40495 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ≠ 𝑃 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑄 ∨ 𝑃))) | 
| 4 |  | cdlemef46g.b | . . . . 5
⊢ 𝐵 = (Base‘𝐾) | 
| 5 |  | cdlemef46g.l | . . . . 5
⊢  ≤ =
(le‘𝐾) | 
| 6 |  | cdlemef46g.m | . . . . 5
⊢  ∧ =
(meet‘𝐾) | 
| 7 |  | cdlemef46g.h | . . . . 5
⊢ 𝐻 = (LHyp‘𝐾) | 
| 8 |  | cdlemef46.v | . . . . 5
⊢ 𝑉 = ((𝑄 ∨ 𝑃) ∧ 𝑊) | 
| 9 |  | cdlemef46.n | . . . . 5
⊢ 𝑁 = ((𝑣 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑣) ∧ 𝑊))) | 
| 10 |  | cdlemefs46.o | . . . . 5
⊢ 𝑂 = ((𝑄 ∨ 𝑃) ∧ (𝑁 ∨ ((𝑢 ∨ 𝑣) ∧ 𝑊))) | 
| 11 |  | cdlemef46.g | . . . . 5
⊢ 𝐺 = (𝑎 ∈ 𝐵 ↦ if((𝑄 ≠ 𝑃 ∧ ¬ 𝑎 ≤ 𝑊), (℩𝑐 ∈ 𝐵 ∀𝑢 ∈ 𝐴 ((¬ 𝑢 ≤ 𝑊 ∧ (𝑢 ∨ (𝑎 ∧ 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 ≤ (𝑄 ∨ 𝑃), (℩𝑏 ∈ 𝐵 ∀𝑣 ∈ 𝐴 ((¬ 𝑣 ≤ 𝑊 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑃)) → 𝑏 = 𝑂)), ⦋𝑢 / 𝑣⦌𝑁) ∨ (𝑎 ∧ 𝑊)))), 𝑎)) | 
| 12 |  | cdlemef46g.u | . . . . 5
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | 
| 13 |  | cdlemef46g.d | . . . . 5
⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) | 
| 14 |  | cdlemefs46g.e | . . . . 5
⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) | 
| 15 |  | cdlemef46g.f | . . . . 5
⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑃 ∨ 𝑄), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) | 
| 16 | 4, 5, 1, 6, 2, 7, 8, 9, 10, 11, 12, 13, 14, 15 | cdlemeg46c 40515 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ≠ 𝑃 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑄 ∨ 𝑃)) → (𝐺‘(𝐹‘𝑅)) = ⦋𝑅 / 𝑡⦌⦋𝐷 / 𝑣⦌𝑁) | 
| 17 | 3, 16 | syl 17 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝐺‘(𝐹‘𝑅)) = ⦋𝑅 / 𝑡⦌⦋𝐷 / 𝑣⦌𝑁) | 
| 18 |  | simp2rl 1243 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → 𝑅 ∈ 𝐴) | 
| 19 |  | eqid 2737 | . . . . 5
⊢ ((((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)))) ∧ 𝑊))) = ((((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)))) ∧ 𝑊))) | 
| 20 |  | eqid 2737 | . . . . 5
⊢ ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) | 
| 21 | 9, 13, 19, 20 | cdleme31snd 40388 | . . . 4
⊢ (𝑅 ∈ 𝐴 → ⦋𝑅 / 𝑡⦌⦋𝐷 / 𝑣⦌𝑁 = ((((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)))) ∧ 𝑊)))) | 
| 22 | 18, 21 | syl 17 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ⦋𝑅 / 𝑡⦌⦋𝐷 / 𝑣⦌𝑁 = ((((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)))) ∧ 𝑊)))) | 
| 23 | 17, 22 | eqtrd 2777 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝐺‘(𝐹‘𝑅)) = ((((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)))) ∧ 𝑊)))) | 
| 24 |  | simp11l 1285 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → 𝐾 ∈ HL) | 
| 25 |  | simp12l 1287 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → 𝑃 ∈ 𝐴) | 
| 26 |  | simp13l 1289 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → 𝑄 ∈ 𝐴) | 
| 27 | 1, 2 | hlatjcom 39369 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) | 
| 28 | 24, 25, 26, 27 | syl3anc 1373 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) | 
| 29 | 28 | oveq1d 7446 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) = ((𝑄 ∨ 𝑃) ∧ 𝑊)) | 
| 30 | 29, 12, 8 | 3eqtr4g 2802 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → 𝑈 = 𝑉) | 
| 31 | 30 | oveq2d 7447 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) ∨ 𝑈) = (((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) ∨ 𝑉)) | 
| 32 | 31 | oveq1d 7446 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ((((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) ∨ 𝑈) ∧ (𝑃 ∨ ((𝑄 ∨ ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)))) ∧ 𝑊))) = ((((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)))) ∧ 𝑊)))) | 
| 33 | 5, 1, 6, 2, 7, 12,
20 | cdleme35g 40457 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ((((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) ∨ 𝑈) ∧ (𝑃 ∨ ((𝑄 ∨ ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊)))) ∧ 𝑊))) = 𝑅) | 
| 34 | 23, 32, 33 | 3eqtr2d 2783 | 1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝐺‘(𝐹‘𝑅)) = 𝑅) |