| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clmsca | Structured version Visualization version GIF version | ||
| Description: The ring of scalars 𝐹 of a subcomplex module is the restriction of the field of complex numbers to the base set of 𝐹. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| Ref | Expression |
|---|---|
| isclm.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| isclm.k | ⊢ 𝐾 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| clmsca | ⊢ (𝑊 ∈ ℂMod → 𝐹 = (ℂfld ↾s 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isclm.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | isclm.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
| 3 | 1, 2 | isclm 25011 | . 2 ⊢ (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) |
| 4 | 3 | simp2bi 1146 | 1 ⊢ (𝑊 ∈ ℂMod → 𝐹 = (ℂfld ↾s 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 ↾s cress 17148 Scalarcsca 17171 SubRingcsubrg 20493 LModclmod 20802 ℂfldccnfld 21300 ℂModcclm 25009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-ov 7358 df-clm 25010 |
| This theorem is referenced by: clm0 25019 clm1 25020 clmadd 25021 clmmul 25022 clmcj 25023 clmsub 25027 clmneg 25028 clmabs 25030 cvsdiv 25079 isncvsngp 25096 |
| Copyright terms: Public domain | W3C validator |