Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clmsca | Structured version Visualization version GIF version |
Description: The ring of scalars 𝐹 of a subcomplex module is the restriction of the field of complex numbers to the base set of 𝐹. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
isclm.f | ⊢ 𝐹 = (Scalar‘𝑊) |
isclm.k | ⊢ 𝐾 = (Base‘𝐹) |
Ref | Expression |
---|---|
clmsca | ⊢ (𝑊 ∈ ℂMod → 𝐹 = (ℂfld ↾s 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isclm.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | isclm.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
3 | 1, 2 | isclm 24133 | . 2 ⊢ (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) |
4 | 3 | simp2bi 1144 | 1 ⊢ (𝑊 ∈ ℂMod → 𝐹 = (ℂfld ↾s 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 ↾s cress 16867 Scalarcsca 16891 SubRingcsubrg 19935 LModclmod 20038 ℂfldccnfld 20510 ℂModcclm 24131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-clm 24132 |
This theorem is referenced by: clm0 24141 clm1 24142 clmadd 24143 clmmul 24144 clmcj 24145 clmsub 24149 clmneg 24150 clmabs 24152 cvsdiv 24201 isncvsngp 24218 |
Copyright terms: Public domain | W3C validator |