MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmsca Structured version   Visualization version   GIF version

Theorem clmsca 24814
Description: The ring of scalars ๐น of a subcomplex module is the restriction of the field of complex numbers to the base set of ๐น. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
isclm.f ๐น = (Scalarโ€˜๐‘Š)
isclm.k ๐พ = (Baseโ€˜๐น)
Assertion
Ref Expression
clmsca (๐‘Š โˆˆ โ„‚Mod โ†’ ๐น = (โ„‚fld โ†พs ๐พ))

Proof of Theorem clmsca
StepHypRef Expression
1 isclm.f . . 3 ๐น = (Scalarโ€˜๐‘Š)
2 isclm.k . . 3 ๐พ = (Baseโ€˜๐น)
31, 2isclm 24813 . 2 (๐‘Š โˆˆ โ„‚Mod โ†” (๐‘Š โˆˆ LMod โˆง ๐น = (โ„‚fld โ†พs ๐พ) โˆง ๐พ โˆˆ (SubRingโ€˜โ„‚fld)))
43simp2bi 1144 1 (๐‘Š โˆˆ โ„‚Mod โ†’ ๐น = (โ„‚fld โ†พs ๐พ))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   = wceq 1539   โˆˆ wcel 2104  โ€˜cfv 6544  (class class class)co 7413  Basecbs 17150   โ†พs cress 17179  Scalarcsca 17206  SubRingcsubrg 20459  LModclmod 20616  โ„‚fldccnfld 21146  โ„‚Modcclm 24811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-nul 5307
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-rab 3431  df-v 3474  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-ov 7416  df-clm 24812
This theorem is referenced by:  clm0  24821  clm1  24822  clmadd  24823  clmmul  24824  clmcj  24825  clmsub  24829  clmneg  24830  clmabs  24832  cvsdiv  24881  isncvsngp  24899
  Copyright terms: Public domain W3C validator