Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clmsubrg | Structured version Visualization version GIF version |
Description: The base set of the ring of scalars of a subcomplex module is the base set of a subring of the field of complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
isclm.f | ⊢ 𝐹 = (Scalar‘𝑊) |
isclm.k | ⊢ 𝐾 = (Base‘𝐹) |
Ref | Expression |
---|---|
clmsubrg | ⊢ (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isclm.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | isclm.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
3 | 1, 2 | isclm 24325 | . 2 ⊢ (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) |
4 | 3 | simp3bi 1146 | 1 ⊢ (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ‘cfv 6473 (class class class)co 7329 Basecbs 17001 ↾s cress 17030 Scalarcsca 17054 SubRingcsubrg 20117 LModclmod 20221 ℂfldccnfld 20695 ℂModcclm 24323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-nul 5247 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-rab 3404 df-v 3443 df-sbc 3727 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-iota 6425 df-fv 6481 df-ov 7332 df-clm 24324 |
This theorem is referenced by: clm0 24333 clm1 24334 clmzss 24339 clmsscn 24340 clmsub 24341 clmneg 24342 clmabs 24344 clmacl 24345 clmmcl 24346 clmsubcl 24347 cmodscexp 24382 cvsdiv 24393 isncvsngp 24411 |
Copyright terms: Public domain | W3C validator |