| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clmsubrg | Structured version Visualization version GIF version | ||
| Description: The base set of the ring of scalars of a subcomplex module is the base set of a subring of the field of complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| Ref | Expression |
|---|---|
| isclm.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| isclm.k | ⊢ 𝐾 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| clmsubrg | ⊢ (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isclm.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | isclm.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
| 3 | 1, 2 | isclm 24962 | . 2 ⊢ (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) |
| 4 | 3 | simp3bi 1147 | 1 ⊢ (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 ↾s cress 17141 Scalarcsca 17164 SubRingcsubrg 20454 LModclmod 20763 ℂfldccnfld 21261 ℂModcclm 24960 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5245 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 df-clm 24961 |
| This theorem is referenced by: clm0 24970 clm1 24971 clmzss 24976 clmsscn 24977 clmsub 24978 clmneg 24979 clmabs 24981 clmacl 24982 clmmcl 24983 clmsubcl 24984 cmodscexp 25019 cvsdiv 25030 isncvsngp 25047 |
| Copyright terms: Public domain | W3C validator |