MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmsubrg Structured version   Visualization version   GIF version

Theorem clmsubrg 25037
Description: The base set of the ring of scalars of a subcomplex module is the base set of a subring of the field of complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
isclm.f 𝐹 = (Scalar‘𝑊)
isclm.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
clmsubrg (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld))

Proof of Theorem clmsubrg
StepHypRef Expression
1 isclm.f . . 3 𝐹 = (Scalar‘𝑊)
2 isclm.k . . 3 𝐾 = (Base‘𝐹)
31, 2isclm 25035 . 2 (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)))
43simp3bi 1144 1 (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cfv 6549  (class class class)co 7419  Basecbs 17183  s cress 17212  Scalarcsca 17239  SubRingcsubrg 20518  LModclmod 20755  fldccnfld 21296  ℂModcclm 25033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-nul 5307
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2930  df-rab 3419  df-v 3463  df-sbc 3774  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-iota 6501  df-fv 6557  df-ov 7422  df-clm 25034
This theorem is referenced by:  clm0  25043  clm1  25044  clmzss  25049  clmsscn  25050  clmsub  25051  clmneg  25052  clmabs  25054  clmacl  25055  clmmcl  25056  clmsubcl  25057  cmodscexp  25092  cvsdiv  25103  isncvsngp  25121
  Copyright terms: Public domain W3C validator