MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmsubrg Structured version   Visualization version   GIF version

Theorem clmsubrg 25113
Description: The base set of the ring of scalars of a subcomplex module is the base set of a subring of the field of complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
isclm.f 𝐹 = (Scalar‘𝑊)
isclm.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
clmsubrg (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld))

Proof of Theorem clmsubrg
StepHypRef Expression
1 isclm.f . . 3 𝐹 = (Scalar‘𝑊)
2 isclm.k . . 3 𝐾 = (Base‘𝐹)
31, 2isclm 25111 . 2 (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)))
43simp3bi 1146 1 (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  Basecbs 17245  s cress 17274  Scalarcsca 17301  SubRingcsubrg 20586  LModclmod 20875  fldccnfld 21382  ℂModcclm 25109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-nul 5312
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-ov 7434  df-clm 25110
This theorem is referenced by:  clm0  25119  clm1  25120  clmzss  25125  clmsscn  25126  clmsub  25127  clmneg  25128  clmabs  25130  clmacl  25131  clmmcl  25132  clmsubcl  25133  cmodscexp  25168  cvsdiv  25179  isncvsngp  25197
  Copyright terms: Public domain W3C validator