MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmsubrg Structured version   Visualization version   GIF version

Theorem clmsubrg 25118
Description: The base set of the ring of scalars of a subcomplex module is the base set of a subring of the field of complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
isclm.f 𝐹 = (Scalar‘𝑊)
isclm.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
clmsubrg (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld))

Proof of Theorem clmsubrg
StepHypRef Expression
1 isclm.f . . 3 𝐹 = (Scalar‘𝑊)
2 isclm.k . . 3 𝐾 = (Base‘𝐹)
31, 2isclm 25116 . 2 (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)))
43simp3bi 1147 1 (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  Basecbs 17258  s cress 17287  Scalarcsca 17314  SubRingcsubrg 20595  LModclmod 20880  fldccnfld 21387  ℂModcclm 25114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-clm 25115
This theorem is referenced by:  clm0  25124  clm1  25125  clmzss  25130  clmsscn  25131  clmsub  25132  clmneg  25133  clmabs  25135  clmacl  25136  clmmcl  25137  clmsubcl  25138  cmodscexp  25173  cvsdiv  25184  isncvsngp  25202
  Copyright terms: Public domain W3C validator