![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clmsubrg | Structured version Visualization version GIF version |
Description: The base set of the ring of scalars of a subcomplex module is the base set of a subring of the field of complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
isclm.f | ⊢ 𝐹 = (Scalar‘𝑊) |
isclm.k | ⊢ 𝐾 = (Base‘𝐹) |
Ref | Expression |
---|---|
clmsubrg | ⊢ (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isclm.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | isclm.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
3 | 1, 2 | isclm 25116 | . 2 ⊢ (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) |
4 | 3 | simp3bi 1147 | 1 ⊢ (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 ↾s cress 17287 Scalarcsca 17314 SubRingcsubrg 20595 LModclmod 20880 ℂfldccnfld 21387 ℂModcclm 25114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-clm 25115 |
This theorem is referenced by: clm0 25124 clm1 25125 clmzss 25130 clmsscn 25131 clmsub 25132 clmneg 25133 clmabs 25135 clmacl 25136 clmmcl 25137 clmsubcl 25138 cmodscexp 25173 cvsdiv 25184 isncvsngp 25202 |
Copyright terms: Public domain | W3C validator |