Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clmsubrg | Structured version Visualization version GIF version |
Description: The base set of the ring of scalars of a subcomplex module is the base set of a subring of the field of complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
isclm.f | ⊢ 𝐹 = (Scalar‘𝑊) |
isclm.k | ⊢ 𝐾 = (Base‘𝐹) |
Ref | Expression |
---|---|
clmsubrg | ⊢ (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isclm.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | isclm.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
3 | 1, 2 | isclm 24276 | . 2 ⊢ (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) |
4 | 3 | simp3bi 1147 | 1 ⊢ (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ‘cfv 6458 (class class class)co 7307 Basecbs 16961 ↾s cress 16990 Scalarcsca 17014 SubRingcsubrg 20069 LModclmod 20172 ℂfldccnfld 20646 ℂModcclm 24274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-nul 5239 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-rab 3306 df-v 3439 df-sbc 3722 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-iota 6410 df-fv 6466 df-ov 7310 df-clm 24275 |
This theorem is referenced by: clm0 24284 clm1 24285 clmzss 24290 clmsscn 24291 clmsub 24292 clmneg 24293 clmabs 24295 clmacl 24296 clmmcl 24297 clmsubcl 24298 cmodscexp 24333 cvsdiv 24344 isncvsngp 24362 |
Copyright terms: Public domain | W3C validator |