| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clmsubrg | Structured version Visualization version GIF version | ||
| Description: The base set of the ring of scalars of a subcomplex module is the base set of a subring of the field of complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| Ref | Expression |
|---|---|
| isclm.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| isclm.k | ⊢ 𝐾 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| clmsubrg | ⊢ (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isclm.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | isclm.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
| 3 | 1, 2 | isclm 24940 | . 2 ⊢ (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) |
| 4 | 3 | simp3bi 1147 | 1 ⊢ (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 ↾s cress 17176 Scalarcsca 17199 SubRingcsubrg 20454 LModclmod 20742 ℂfldccnfld 21240 ℂModcclm 24938 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5256 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-clm 24939 |
| This theorem is referenced by: clm0 24948 clm1 24949 clmzss 24954 clmsscn 24955 clmsub 24956 clmneg 24957 clmabs 24959 clmacl 24960 clmmcl 24961 clmsubcl 24962 cmodscexp 24997 cvsdiv 25008 isncvsngp 25025 |
| Copyright terms: Public domain | W3C validator |