| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clmsubrg | Structured version Visualization version GIF version | ||
| Description: The base set of the ring of scalars of a subcomplex module is the base set of a subring of the field of complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| Ref | Expression |
|---|---|
| isclm.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| isclm.k | ⊢ 𝐾 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| clmsubrg | ⊢ (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isclm.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | isclm.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
| 3 | 1, 2 | isclm 24986 | . 2 ⊢ (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) |
| 4 | 3 | simp3bi 1147 | 1 ⊢ (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 ↾s cress 17136 Scalarcsca 17159 SubRingcsubrg 20479 LModclmod 20788 ℂfldccnfld 21286 ℂModcclm 24984 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5239 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 df-ov 7344 df-clm 24985 |
| This theorem is referenced by: clm0 24994 clm1 24995 clmzss 25000 clmsscn 25001 clmsub 25002 clmneg 25003 clmabs 25005 clmacl 25006 clmmcl 25007 clmsubcl 25008 cmodscexp 25043 cvsdiv 25054 isncvsngp 25071 |
| Copyright terms: Public domain | W3C validator |