MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmsubrg Structured version   Visualization version   GIF version

Theorem clmsubrg 24278
Description: The base set of the ring of scalars of a subcomplex module is the base set of a subring of the field of complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
isclm.f 𝐹 = (Scalar‘𝑊)
isclm.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
clmsubrg (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld))

Proof of Theorem clmsubrg
StepHypRef Expression
1 isclm.f . . 3 𝐹 = (Scalar‘𝑊)
2 isclm.k . . 3 𝐾 = (Base‘𝐹)
31, 2isclm 24276 . 2 (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)))
43simp3bi 1147 1 (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  cfv 6458  (class class class)co 7307  Basecbs 16961  s cress 16990  Scalarcsca 17014  SubRingcsubrg 20069  LModclmod 20172  fldccnfld 20646  ℂModcclm 24274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-nul 5239
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2942  df-rab 3306  df-v 3439  df-sbc 3722  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-iota 6410  df-fv 6466  df-ov 7310  df-clm 24275
This theorem is referenced by:  clm0  24284  clm1  24285  clmzss  24290  clmsscn  24291  clmsub  24292  clmneg  24293  clmabs  24295  clmacl  24296  clmmcl  24297  clmsubcl  24298  cmodscexp  24333  cvsdiv  24344  isncvsngp  24362
  Copyright terms: Public domain W3C validator