Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmabs Structured version   Visualization version   GIF version

Theorem clmabs 23692
 Description: Norm in the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
clm0.f 𝐹 = (Scalar‘𝑊)
clmsub.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
clmabs ((𝑊 ∈ ℂMod ∧ 𝐴𝐾) → (abs‘𝐴) = ((norm‘𝐹)‘𝐴))

Proof of Theorem clmabs
StepHypRef Expression
1 clm0.f . . . . . 6 𝐹 = (Scalar‘𝑊)
2 clmsub.k . . . . . 6 𝐾 = (Base‘𝐹)
31, 2clmsca 23674 . . . . 5 (𝑊 ∈ ℂMod → 𝐹 = (ℂflds 𝐾))
43fveq2d 6653 . . . 4 (𝑊 ∈ ℂMod → (norm‘𝐹) = (norm‘(ℂflds 𝐾)))
54adantr 484 . . 3 ((𝑊 ∈ ℂMod ∧ 𝐴𝐾) → (norm‘𝐹) = (norm‘(ℂflds 𝐾)))
65fveq1d 6651 . 2 ((𝑊 ∈ ℂMod ∧ 𝐴𝐾) → ((norm‘𝐹)‘𝐴) = ((norm‘(ℂflds 𝐾))‘𝐴))
71, 2clmsubrg 23675 . . . 4 (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld))
8 subrgsubg 19538 . . . 4 (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ∈ (SubGrp‘ℂfld))
97, 8syl 17 . . 3 (𝑊 ∈ ℂMod → 𝐾 ∈ (SubGrp‘ℂfld))
10 eqid 2801 . . . 4 (ℂflds 𝐾) = (ℂflds 𝐾)
11 cnfldnm 23388 . . . 4 abs = (norm‘ℂfld)
12 eqid 2801 . . . 4 (norm‘(ℂflds 𝐾)) = (norm‘(ℂflds 𝐾))
1310, 11, 12subgnm2 23244 . . 3 ((𝐾 ∈ (SubGrp‘ℂfld) ∧ 𝐴𝐾) → ((norm‘(ℂflds 𝐾))‘𝐴) = (abs‘𝐴))
149, 13sylan 583 . 2 ((𝑊 ∈ ℂMod ∧ 𝐴𝐾) → ((norm‘(ℂflds 𝐾))‘𝐴) = (abs‘𝐴))
156, 14eqtr2d 2837 1 ((𝑊 ∈ ℂMod ∧ 𝐴𝐾) → (abs‘𝐴) = ((norm‘𝐹)‘𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2112  ‘cfv 6328  (class class class)co 7139  abscabs 14589  Basecbs 16479   ↾s cress 16480  Scalarcsca 16564  SubGrpcsubg 18269  SubRingcsubrg 19528  ℂfldccnfld 20095  normcnm 23187  ℂModcclm 23671 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-rp 12382  df-fz 12890  df-seq 13369  df-exp 13430  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-starv 16576  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-0g 16711  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-grp 18102  df-subg 18272  df-cmn 18904  df-mgp 19237  df-ring 19296  df-cring 19297  df-subrg 19530  df-cnfld 20096  df-nm 23193  df-clm 23672 This theorem is referenced by:  nmoleub2lem3  23724  nmoleub3  23728  ncvsprp  23761  cphnmvs  23799
 Copyright terms: Public domain W3C validator