![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clmneg | Structured version Visualization version GIF version |
Description: Negation in the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
clm0.f | ⊢ 𝐹 = (Scalar‘𝑊) |
clmsub.k | ⊢ 𝐾 = (Base‘𝐹) |
Ref | Expression |
---|---|
clmneg | ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾) → -𝐴 = ((invg‘𝐹)‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clm0.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | clmsub.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
3 | 1, 2 | clmsca 25036 | . . . . 5 ⊢ (𝑊 ∈ ℂMod → 𝐹 = (ℂfld ↾s 𝐾)) |
4 | 3 | fveq2d 6900 | . . . 4 ⊢ (𝑊 ∈ ℂMod → (invg‘𝐹) = (invg‘(ℂfld ↾s 𝐾))) |
5 | 4 | adantr 479 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾) → (invg‘𝐹) = (invg‘(ℂfld ↾s 𝐾))) |
6 | 5 | fveq1d 6898 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾) → ((invg‘𝐹)‘𝐴) = ((invg‘(ℂfld ↾s 𝐾))‘𝐴)) |
7 | 1, 2 | clmsubrg 25037 | . . . 4 ⊢ (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld)) |
8 | subrgsubg 20528 | . . . 4 ⊢ (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 ∈ (SubGrp‘ℂfld)) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝑊 ∈ ℂMod → 𝐾 ∈ (SubGrp‘ℂfld)) |
10 | eqid 2725 | . . . 4 ⊢ (ℂfld ↾s 𝐾) = (ℂfld ↾s 𝐾) | |
11 | eqid 2725 | . . . 4 ⊢ (invg‘ℂfld) = (invg‘ℂfld) | |
12 | eqid 2725 | . . . 4 ⊢ (invg‘(ℂfld ↾s 𝐾)) = (invg‘(ℂfld ↾s 𝐾)) | |
13 | 10, 11, 12 | subginv 19096 | . . 3 ⊢ ((𝐾 ∈ (SubGrp‘ℂfld) ∧ 𝐴 ∈ 𝐾) → ((invg‘ℂfld)‘𝐴) = ((invg‘(ℂfld ↾s 𝐾))‘𝐴)) |
14 | 9, 13 | sylan 578 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾) → ((invg‘ℂfld)‘𝐴) = ((invg‘(ℂfld ↾s 𝐾))‘𝐴)) |
15 | 1, 2 | clmsscn 25050 | . . . 4 ⊢ (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ) |
16 | 15 | sselda 3976 | . . 3 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾) → 𝐴 ∈ ℂ) |
17 | cnfldneg 21340 | . . 3 ⊢ (𝐴 ∈ ℂ → ((invg‘ℂfld)‘𝐴) = -𝐴) | |
18 | 16, 17 | syl 17 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾) → ((invg‘ℂfld)‘𝐴) = -𝐴) |
19 | 6, 14, 18 | 3eqtr2rd 2772 | 1 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾) → -𝐴 = ((invg‘𝐹)‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ‘cfv 6549 (class class class)co 7419 ℂcc 11138 -cneg 11477 Basecbs 17183 ↾s cress 17212 Scalarcsca 17239 invgcminusg 18899 SubGrpcsubg 19083 SubRingcsubrg 20518 ℂfldccnfld 21296 ℂModcclm 25033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 ax-addf 11219 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-dec 12711 df-uz 12856 df-fz 13520 df-struct 17119 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-mulr 17250 df-starv 17251 df-tset 17255 df-ple 17256 df-ds 17258 df-unif 17259 df-0g 17426 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-grp 18901 df-minusg 18902 df-subg 19086 df-cmn 19749 df-mgp 20087 df-ring 20187 df-cring 20188 df-subrg 20520 df-cnfld 21297 df-clm 25034 |
This theorem is referenced by: clmvneg1 25070 clmvsneg 25071 clmvsubval 25080 ncvspi 25128 |
Copyright terms: Public domain | W3C validator |