| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > submcld | Structured version Visualization version GIF version | ||
| Description: Submonoids are closed under the monoid operation. (Contributed by Thierry Arnoux, 4-May-2025.) |
| Ref | Expression |
|---|---|
| submcld.1 | ⊢ + = (+g‘𝑀) |
| submcld.2 | ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝑀)) |
| submcld.3 | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| submcld.4 | ⊢ (𝜑 → 𝑌 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| submcld | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submcld.2 | . 2 ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝑀)) | |
| 2 | submcld.3 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
| 3 | submcld.4 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝑆) | |
| 4 | submcld.1 | . . 3 ⊢ + = (+g‘𝑀) | |
| 5 | 4 | submcl 18717 | . 2 ⊢ ((𝑆 ∈ (SubMnd‘𝑀) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) |
| 6 | 1, 2, 3, 5 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 +gcplusg 17158 SubMndcsubmnd 18687 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-submnd 18689 |
| This theorem is referenced by: gsumwun 33040 rloccring 33232 ssdifidlprm 33418 |
| Copyright terms: Public domain | W3C validator |