| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > submcld | Structured version Visualization version GIF version | ||
| Description: Submonoids are closed under the monoid operation. (Contributed by Thierry Arnoux, 4-May-2025.) |
| Ref | Expression |
|---|---|
| submcld.1 | ⊢ + = (+g‘𝑀) |
| submcld.2 | ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝑀)) |
| submcld.3 | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| submcld.4 | ⊢ (𝜑 → 𝑌 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| submcld | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submcld.2 | . 2 ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝑀)) | |
| 2 | submcld.3 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
| 3 | submcld.4 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝑆) | |
| 4 | submcld.1 | . . 3 ⊢ + = (+g‘𝑀) | |
| 5 | 4 | submcl 18722 | . 2 ⊢ ((𝑆 ∈ (SubMnd‘𝑀) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) |
| 6 | 1, 2, 3, 5 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ‘cfv 6486 (class class class)co 7352 +gcplusg 17163 SubMndcsubmnd 18692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-submnd 18694 |
| This theorem is referenced by: gsumwun 33052 rloccring 33244 ssdifidlprm 33430 |
| Copyright terms: Public domain | W3C validator |