| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > submcld | Structured version Visualization version GIF version | ||
| Description: Submonoids are closed under the monoid operation. (Contributed by Thierry Arnoux, 4-May-2025.) |
| Ref | Expression |
|---|---|
| submcld.1 | ⊢ + = (+g‘𝑀) |
| submcld.2 | ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝑀)) |
| submcld.3 | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| submcld.4 | ⊢ (𝜑 → 𝑌 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| submcld | ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submcld.2 | . 2 ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝑀)) | |
| 2 | submcld.3 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
| 3 | submcld.4 | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝑆) | |
| 4 | submcld.1 | . . 3 ⊢ + = (+g‘𝑀) | |
| 5 | 4 | submcl 18739 | . 2 ⊢ ((𝑆 ∈ (SubMnd‘𝑀) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) |
| 6 | 1, 2, 3, 5 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 +gcplusg 17220 SubMndcsubmnd 18709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-submnd 18711 |
| This theorem is referenced by: gsumwun 33005 rloccring 33221 ssdifidlprm 33429 |
| Copyright terms: Public domain | W3C validator |