Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cosnop | Structured version Visualization version GIF version |
Description: Composition of two ordered pair singletons with matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
Ref | Expression |
---|---|
cosnop.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
cosnop.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
cosnop.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
Ref | Expression |
---|---|
cosnop | ⊢ (𝜑 → ({〈𝐴, 𝐵〉} ∘ {〈𝐶, 𝐴〉}) = {〈𝐶, 𝐵〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cosnop.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | snnzg 4665 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≠ ∅) | |
3 | xpco 6121 | . . 3 ⊢ ({𝐴} ≠ ∅ → (({𝐴} × {𝐵}) ∘ ({𝐶} × {𝐴})) = ({𝐶} × {𝐵})) | |
4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝜑 → (({𝐴} × {𝐵}) ∘ ({𝐶} × {𝐴})) = ({𝐶} × {𝐵})) |
5 | cosnop.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
6 | xpsng 6911 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉}) | |
7 | 1, 5, 6 | syl2anc 587 | . . 3 ⊢ (𝜑 → ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉}) |
8 | cosnop.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
9 | xpsng 6911 | . . . 4 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑉) → ({𝐶} × {𝐴}) = {〈𝐶, 𝐴〉}) | |
10 | 8, 1, 9 | syl2anc 587 | . . 3 ⊢ (𝜑 → ({𝐶} × {𝐴}) = {〈𝐶, 𝐴〉}) |
11 | 7, 10 | coeq12d 5707 | . 2 ⊢ (𝜑 → (({𝐴} × {𝐵}) ∘ ({𝐶} × {𝐴})) = ({〈𝐴, 𝐵〉} ∘ {〈𝐶, 𝐴〉})) |
12 | xpsng 6911 | . . 3 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → ({𝐶} × {𝐵}) = {〈𝐶, 𝐵〉}) | |
13 | 8, 5, 12 | syl2anc 587 | . 2 ⊢ (𝜑 → ({𝐶} × {𝐵}) = {〈𝐶, 𝐵〉}) |
14 | 4, 11, 13 | 3eqtr3d 2781 | 1 ⊢ (𝜑 → ({〈𝐴, 𝐵〉} ∘ {〈𝐶, 𝐴〉}) = {〈𝐶, 𝐵〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2114 ≠ wne 2934 ∅c0 4211 {csn 4516 〈cop 4522 × cxp 5523 ∘ ccom 5529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-v 3400 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 |
This theorem is referenced by: coprprop 30607 |
Copyright terms: Public domain | W3C validator |