Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cosnop | Structured version Visualization version GIF version |
Description: Composition of two ordered pair singletons with matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
Ref | Expression |
---|---|
cosnop.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
cosnop.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
cosnop.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
Ref | Expression |
---|---|
cosnop | ⊢ (𝜑 → ({〈𝐴, 𝐵〉} ∘ {〈𝐶, 𝐴〉}) = {〈𝐶, 𝐵〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cosnop.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | snnzg 4715 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≠ ∅) | |
3 | xpco 6189 | . . 3 ⊢ ({𝐴} ≠ ∅ → (({𝐴} × {𝐵}) ∘ ({𝐶} × {𝐴})) = ({𝐶} × {𝐵})) | |
4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝜑 → (({𝐴} × {𝐵}) ∘ ({𝐶} × {𝐴})) = ({𝐶} × {𝐵})) |
5 | cosnop.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
6 | xpsng 7005 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉}) | |
7 | 1, 5, 6 | syl2anc 583 | . . 3 ⊢ (𝜑 → ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉}) |
8 | cosnop.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
9 | xpsng 7005 | . . . 4 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑉) → ({𝐶} × {𝐴}) = {〈𝐶, 𝐴〉}) | |
10 | 8, 1, 9 | syl2anc 583 | . . 3 ⊢ (𝜑 → ({𝐶} × {𝐴}) = {〈𝐶, 𝐴〉}) |
11 | 7, 10 | coeq12d 5770 | . 2 ⊢ (𝜑 → (({𝐴} × {𝐵}) ∘ ({𝐶} × {𝐴})) = ({〈𝐴, 𝐵〉} ∘ {〈𝐶, 𝐴〉})) |
12 | xpsng 7005 | . . 3 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → ({𝐶} × {𝐵}) = {〈𝐶, 𝐵〉}) | |
13 | 8, 5, 12 | syl2anc 583 | . 2 ⊢ (𝜑 → ({𝐶} × {𝐵}) = {〈𝐶, 𝐵〉}) |
14 | 4, 11, 13 | 3eqtr3d 2787 | 1 ⊢ (𝜑 → ({〈𝐴, 𝐵〉} ∘ {〈𝐶, 𝐴〉}) = {〈𝐶, 𝐵〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∅c0 4261 {csn 4566 〈cop 4572 × cxp 5586 ∘ ccom 5592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 |
This theorem is referenced by: coprprop 31011 |
Copyright terms: Public domain | W3C validator |