Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cosnop Structured version   Visualization version   GIF version

Theorem cosnop 31077
Description: Composition of two ordered pair singletons with matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023.)
Hypotheses
Ref Expression
cosnop.a (𝜑𝐴𝑉)
cosnop.b (𝜑𝐵𝑊)
cosnop.c (𝜑𝐶𝑋)
Assertion
Ref Expression
cosnop (𝜑 → ({⟨𝐴, 𝐵⟩} ∘ {⟨𝐶, 𝐴⟩}) = {⟨𝐶, 𝐵⟩})

Proof of Theorem cosnop
StepHypRef Expression
1 cosnop.a . . 3 (𝜑𝐴𝑉)
2 snnzg 4714 . . 3 (𝐴𝑉 → {𝐴} ≠ ∅)
3 xpco 6207 . . 3 ({𝐴} ≠ ∅ → (({𝐴} × {𝐵}) ∘ ({𝐶} × {𝐴})) = ({𝐶} × {𝐵}))
41, 2, 33syl 18 . 2 (𝜑 → (({𝐴} × {𝐵}) ∘ ({𝐶} × {𝐴})) = ({𝐶} × {𝐵}))
5 cosnop.b . . . 4 (𝜑𝐵𝑊)
6 xpsng 7043 . . . 4 ((𝐴𝑉𝐵𝑊) → ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩})
71, 5, 6syl2anc 585 . . 3 (𝜑 → ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩})
8 cosnop.c . . . 4 (𝜑𝐶𝑋)
9 xpsng 7043 . . . 4 ((𝐶𝑋𝐴𝑉) → ({𝐶} × {𝐴}) = {⟨𝐶, 𝐴⟩})
108, 1, 9syl2anc 585 . . 3 (𝜑 → ({𝐶} × {𝐴}) = {⟨𝐶, 𝐴⟩})
117, 10coeq12d 5786 . 2 (𝜑 → (({𝐴} × {𝐵}) ∘ ({𝐶} × {𝐴})) = ({⟨𝐴, 𝐵⟩} ∘ {⟨𝐶, 𝐴⟩}))
12 xpsng 7043 . . 3 ((𝐶𝑋𝐵𝑊) → ({𝐶} × {𝐵}) = {⟨𝐶, 𝐵⟩})
138, 5, 12syl2anc 585 . 2 (𝜑 → ({𝐶} × {𝐵}) = {⟨𝐶, 𝐵⟩})
144, 11, 133eqtr3d 2784 1 (𝜑 → ({⟨𝐴, 𝐵⟩} ∘ {⟨𝐶, 𝐴⟩}) = {⟨𝐶, 𝐵⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  wne 2941  c0 4262  {csn 4565  cop 4571   × cxp 5598  ccom 5604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3305  df-rab 3306  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465
This theorem is referenced by:  coprprop  31081
  Copyright terms: Public domain W3C validator