Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cosnop Structured version   Visualization version   GIF version

Theorem cosnop 32624
Description: Composition of two ordered pair singletons with matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023.)
Hypotheses
Ref Expression
cosnop.a (𝜑𝐴𝑉)
cosnop.b (𝜑𝐵𝑊)
cosnop.c (𝜑𝐶𝑋)
Assertion
Ref Expression
cosnop (𝜑 → ({⟨𝐴, 𝐵⟩} ∘ {⟨𝐶, 𝐴⟩}) = {⟨𝐶, 𝐵⟩})

Proof of Theorem cosnop
StepHypRef Expression
1 cosnop.a . . 3 (𝜑𝐴𝑉)
2 snnzg 4740 . . 3 (𝐴𝑉 → {𝐴} ≠ ∅)
3 xpco 6264 . . 3 ({𝐴} ≠ ∅ → (({𝐴} × {𝐵}) ∘ ({𝐶} × {𝐴})) = ({𝐶} × {𝐵}))
41, 2, 33syl 18 . 2 (𝜑 → (({𝐴} × {𝐵}) ∘ ({𝐶} × {𝐴})) = ({𝐶} × {𝐵}))
5 cosnop.b . . . 4 (𝜑𝐵𝑊)
6 xpsng 7113 . . . 4 ((𝐴𝑉𝐵𝑊) → ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩})
71, 5, 6syl2anc 584 . . 3 (𝜑 → ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩})
8 cosnop.c . . . 4 (𝜑𝐶𝑋)
9 xpsng 7113 . . . 4 ((𝐶𝑋𝐴𝑉) → ({𝐶} × {𝐴}) = {⟨𝐶, 𝐴⟩})
108, 1, 9syl2anc 584 . . 3 (𝜑 → ({𝐶} × {𝐴}) = {⟨𝐶, 𝐴⟩})
117, 10coeq12d 5830 . 2 (𝜑 → (({𝐴} × {𝐵}) ∘ ({𝐶} × {𝐴})) = ({⟨𝐴, 𝐵⟩} ∘ {⟨𝐶, 𝐴⟩}))
12 xpsng 7113 . . 3 ((𝐶𝑋𝐵𝑊) → ({𝐶} × {𝐵}) = {⟨𝐶, 𝐵⟩})
138, 5, 12syl2anc 584 . 2 (𝜑 → ({𝐶} × {𝐵}) = {⟨𝐶, 𝐵⟩})
144, 11, 133eqtr3d 2773 1 (𝜑 → ({⟨𝐴, 𝐵⟩} ∘ {⟨𝐶, 𝐴⟩}) = {⟨𝐶, 𝐵⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2926  c0 4298  {csn 4591  cop 4597   × cxp 5638  ccom 5644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520
This theorem is referenced by:  coprprop  32628
  Copyright terms: Public domain W3C validator