Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cosnop Structured version   Visualization version   GIF version

Theorem cosnop 32671
Description: Composition of two ordered pair singletons with matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023.)
Hypotheses
Ref Expression
cosnop.a (𝜑𝐴𝑉)
cosnop.b (𝜑𝐵𝑊)
cosnop.c (𝜑𝐶𝑋)
Assertion
Ref Expression
cosnop (𝜑 → ({⟨𝐴, 𝐵⟩} ∘ {⟨𝐶, 𝐴⟩}) = {⟨𝐶, 𝐵⟩})

Proof of Theorem cosnop
StepHypRef Expression
1 cosnop.a . . 3 (𝜑𝐴𝑉)
2 snnzg 4727 . . 3 (𝐴𝑉 → {𝐴} ≠ ∅)
3 xpco 6236 . . 3 ({𝐴} ≠ ∅ → (({𝐴} × {𝐵}) ∘ ({𝐶} × {𝐴})) = ({𝐶} × {𝐵}))
41, 2, 33syl 18 . 2 (𝜑 → (({𝐴} × {𝐵}) ∘ ({𝐶} × {𝐴})) = ({𝐶} × {𝐵}))
5 cosnop.b . . . 4 (𝜑𝐵𝑊)
6 xpsng 7072 . . . 4 ((𝐴𝑉𝐵𝑊) → ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩})
71, 5, 6syl2anc 584 . . 3 (𝜑 → ({𝐴} × {𝐵}) = {⟨𝐴, 𝐵⟩})
8 cosnop.c . . . 4 (𝜑𝐶𝑋)
9 xpsng 7072 . . . 4 ((𝐶𝑋𝐴𝑉) → ({𝐶} × {𝐴}) = {⟨𝐶, 𝐴⟩})
108, 1, 9syl2anc 584 . . 3 (𝜑 → ({𝐶} × {𝐴}) = {⟨𝐶, 𝐴⟩})
117, 10coeq12d 5804 . 2 (𝜑 → (({𝐴} × {𝐵}) ∘ ({𝐶} × {𝐴})) = ({⟨𝐴, 𝐵⟩} ∘ {⟨𝐶, 𝐴⟩}))
12 xpsng 7072 . . 3 ((𝐶𝑋𝐵𝑊) → ({𝐶} × {𝐵}) = {⟨𝐶, 𝐵⟩})
138, 5, 12syl2anc 584 . 2 (𝜑 → ({𝐶} × {𝐵}) = {⟨𝐶, 𝐵⟩})
144, 11, 133eqtr3d 2774 1 (𝜑 → ({⟨𝐴, 𝐵⟩} ∘ {⟨𝐶, 𝐴⟩}) = {⟨𝐶, 𝐵⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wne 2928  c0 4283  {csn 4576  cop 4582   × cxp 5614  ccom 5620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488
This theorem is referenced by:  coprprop  32675
  Copyright terms: Public domain W3C validator