| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cosnop | Structured version Visualization version GIF version | ||
| Description: Composition of two ordered pair singletons with matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
| Ref | Expression |
|---|---|
| cosnop.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| cosnop.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| cosnop.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| cosnop | ⊢ (𝜑 → ({〈𝐴, 𝐵〉} ∘ {〈𝐶, 𝐴〉}) = {〈𝐶, 𝐵〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cosnop.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | snnzg 4740 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≠ ∅) | |
| 3 | xpco 6264 | . . 3 ⊢ ({𝐴} ≠ ∅ → (({𝐴} × {𝐵}) ∘ ({𝐶} × {𝐴})) = ({𝐶} × {𝐵})) | |
| 4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝜑 → (({𝐴} × {𝐵}) ∘ ({𝐶} × {𝐴})) = ({𝐶} × {𝐵})) |
| 5 | cosnop.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 6 | xpsng 7113 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉}) | |
| 7 | 1, 5, 6 | syl2anc 584 | . . 3 ⊢ (𝜑 → ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉}) |
| 8 | cosnop.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
| 9 | xpsng 7113 | . . . 4 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑉) → ({𝐶} × {𝐴}) = {〈𝐶, 𝐴〉}) | |
| 10 | 8, 1, 9 | syl2anc 584 | . . 3 ⊢ (𝜑 → ({𝐶} × {𝐴}) = {〈𝐶, 𝐴〉}) |
| 11 | 7, 10 | coeq12d 5830 | . 2 ⊢ (𝜑 → (({𝐴} × {𝐵}) ∘ ({𝐶} × {𝐴})) = ({〈𝐴, 𝐵〉} ∘ {〈𝐶, 𝐴〉})) |
| 12 | xpsng 7113 | . . 3 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → ({𝐶} × {𝐵}) = {〈𝐶, 𝐵〉}) | |
| 13 | 8, 5, 12 | syl2anc 584 | . 2 ⊢ (𝜑 → ({𝐶} × {𝐵}) = {〈𝐶, 𝐵〉}) |
| 14 | 4, 11, 13 | 3eqtr3d 2773 | 1 ⊢ (𝜑 → ({〈𝐴, 𝐵〉} ∘ {〈𝐶, 𝐴〉}) = {〈𝐶, 𝐵〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∅c0 4298 {csn 4591 〈cop 4597 × cxp 5638 ∘ ccom 5644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 |
| This theorem is referenced by: coprprop 32628 |
| Copyright terms: Public domain | W3C validator |