![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cosnop | Structured version Visualization version GIF version |
Description: Composition of two ordered pair singletons with matching domain and range. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
Ref | Expression |
---|---|
cosnop.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
cosnop.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
cosnop.c | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
Ref | Expression |
---|---|
cosnop | ⊢ (𝜑 → ({〈𝐴, 𝐵〉} ∘ {〈𝐶, 𝐴〉}) = {〈𝐶, 𝐵〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cosnop.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | snnzg 4799 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝐴} ≠ ∅) | |
3 | xpco 6320 | . . 3 ⊢ ({𝐴} ≠ ∅ → (({𝐴} × {𝐵}) ∘ ({𝐶} × {𝐴})) = ({𝐶} × {𝐵})) | |
4 | 1, 2, 3 | 3syl 18 | . 2 ⊢ (𝜑 → (({𝐴} × {𝐵}) ∘ ({𝐶} × {𝐴})) = ({𝐶} × {𝐵})) |
5 | cosnop.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
6 | xpsng 7173 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉}) | |
7 | 1, 5, 6 | syl2anc 583 | . . 3 ⊢ (𝜑 → ({𝐴} × {𝐵}) = {〈𝐴, 𝐵〉}) |
8 | cosnop.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
9 | xpsng 7173 | . . . 4 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑉) → ({𝐶} × {𝐴}) = {〈𝐶, 𝐴〉}) | |
10 | 8, 1, 9 | syl2anc 583 | . . 3 ⊢ (𝜑 → ({𝐶} × {𝐴}) = {〈𝐶, 𝐴〉}) |
11 | 7, 10 | coeq12d 5889 | . 2 ⊢ (𝜑 → (({𝐴} × {𝐵}) ∘ ({𝐶} × {𝐴})) = ({〈𝐴, 𝐵〉} ∘ {〈𝐶, 𝐴〉})) |
12 | xpsng 7173 | . . 3 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → ({𝐶} × {𝐵}) = {〈𝐶, 𝐵〉}) | |
13 | 8, 5, 12 | syl2anc 583 | . 2 ⊢ (𝜑 → ({𝐶} × {𝐵}) = {〈𝐶, 𝐵〉}) |
14 | 4, 11, 13 | 3eqtr3d 2788 | 1 ⊢ (𝜑 → ({〈𝐴, 𝐵〉} ∘ {〈𝐶, 𝐴〉}) = {〈𝐶, 𝐵〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∅c0 4352 {csn 4648 〈cop 4654 × cxp 5698 ∘ ccom 5704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 |
This theorem is referenced by: coprprop 32711 |
Copyright terms: Public domain | W3C validator |