| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvsn | Structured version Visualization version GIF version | ||
| Description: Converse of a singleton of an ordered pair. (Contributed by NM, 11-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) (Proof shortened by BJ, 12-Feb-2022.) |
| Ref | Expression |
|---|---|
| cnvsn.1 | ⊢ 𝐴 ∈ V |
| cnvsn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| cnvsn | ⊢ ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | cnvsn.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | cnvsng 6170 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉}) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4573 〈cop 4579 ◡ccnv 5613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 |
| This theorem is referenced by: op2ndb 6174 f1osn 6803 cnvfi 9085 ex-cnv 30417 |
| Copyright terms: Public domain | W3C validator |