| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvsn | Structured version Visualization version GIF version | ||
| Description: Converse of a singleton of an ordered pair. (Contributed by NM, 11-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) (Proof shortened by BJ, 12-Feb-2022.) |
| Ref | Expression |
|---|---|
| cnvsn.1 | ⊢ 𝐴 ∈ V |
| cnvsn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| cnvsn | ⊢ ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | cnvsn.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | cnvsng 6172 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉}) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3436 {csn 4577 〈cop 4583 ◡ccnv 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-cnv 5627 |
| This theorem is referenced by: op2ndb 6176 f1osn 6804 cnvfi 9090 ex-cnv 30381 |
| Copyright terms: Public domain | W3C validator |