![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvsn | Structured version Visualization version GIF version |
Description: Converse of a singleton of an ordered pair. (Contributed by NM, 11-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) (Proof shortened by BJ, 12-Feb-2022.) |
Ref | Expression |
---|---|
cnvsn.1 | ⊢ 𝐴 ∈ V |
cnvsn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
cnvsn | ⊢ ◡{⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | cnvsn.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | cnvsng 6227 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ◡{⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ ◡{⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 Vcvv 3471 {csn 4629 ⟨cop 4635 ◡ccnv 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-xp 5684 df-rel 5685 df-cnv 5686 |
This theorem is referenced by: op2ndb 6231 f1osn 6879 cnvfi 9204 1sdomOLD 9273 ex-cnv 30246 |
Copyright terms: Public domain | W3C validator |