MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvsn Structured version   Visualization version   GIF version

Theorem cnvsn 6216
Description: Converse of a singleton of an ordered pair. (Contributed by NM, 11-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) (Proof shortened by BJ, 12-Feb-2022.)
Hypotheses
Ref Expression
cnvsn.1 𝐴 ∈ V
cnvsn.2 𝐵 ∈ V
Assertion
Ref Expression
cnvsn {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}

Proof of Theorem cnvsn
StepHypRef Expression
1 cnvsn.1 . 2 𝐴 ∈ V
2 cnvsn.2 . 2 𝐵 ∈ V
3 cnvsng 6213 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩})
41, 2, 3mp2an 689 1 {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098  Vcvv 3466  {csn 4621  cop 4627  ccnv 5666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-br 5140  df-opab 5202  df-xp 5673  df-rel 5674  df-cnv 5675
This theorem is referenced by:  op2ndb  6217  f1osn  6864  cnvfi  9177  1sdomOLD  9246  ex-cnv  30184
  Copyright terms: Public domain W3C validator