MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1sdomOLD Structured version   Visualization version   GIF version

Theorem 1sdomOLD 9283
Description: Obsolete version of 1sdom 9282 as of 30-Dec-2024. (Contributed by Mario Carneiro, 12-Jan-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
1sdomOLD (𝐴𝑉 → (1o𝐴 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦))
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem 1sdomOLD
Dummy variables 𝑓 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5152 . 2 (𝑎 = 𝐴 → (1o𝑎 ↔ 1o𝐴))
2 rexeq 3320 . . 3 (𝑎 = 𝐴 → (∃𝑦𝑎 ¬ 𝑥 = 𝑦 ↔ ∃𝑦𝐴 ¬ 𝑥 = 𝑦))
32rexeqbi1dv 3337 . 2 (𝑎 = 𝐴 → (∃𝑥𝑎𝑦𝑎 ¬ 𝑥 = 𝑦 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦))
4 1onn 8677 . . . 4 1o ∈ ω
5 sucdom 9269 . . . 4 (1o ∈ ω → (1o𝑎 ↔ suc 1o𝑎))
64, 5ax-mp 5 . . 3 (1o𝑎 ↔ suc 1o𝑎)
7 df-2o 8506 . . . 4 2o = suc 1o
87breq1i 5155 . . 3 (2o𝑎 ↔ suc 1o𝑎)
9 2dom 9069 . . . 4 (2o𝑎 → ∃𝑥𝑎𝑦𝑎 ¬ 𝑥 = 𝑦)
10 df2o3 8513 . . . . 5 2o = {∅, 1o}
11 vex 3482 . . . . . . . . . . . 12 𝑥 ∈ V
12 vex 3482 . . . . . . . . . . . 12 𝑦 ∈ V
13 0ex 5313 . . . . . . . . . . . 12 ∅ ∈ V
14 1oex 8515 . . . . . . . . . . . 12 1o ∈ V
1511, 12, 13, 14funpr 6624 . . . . . . . . . . 11 (𝑥𝑦 → Fun {⟨𝑥, ∅⟩, ⟨𝑦, 1o⟩})
16 df-ne 2939 . . . . . . . . . . 11 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
17 1n0 8525 . . . . . . . . . . . . . . 15 1o ≠ ∅
1817necomi 2993 . . . . . . . . . . . . . 14 ∅ ≠ 1o
1913, 14, 11, 12fpr 7174 . . . . . . . . . . . . . 14 (∅ ≠ 1o → {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}⟶{𝑥, 𝑦})
2018, 19ax-mp 5 . . . . . . . . . . . . 13 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}⟶{𝑥, 𝑦}
21 df-f1 6568 . . . . . . . . . . . . 13 ({⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}–1-1→{𝑥, 𝑦} ↔ ({⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}⟶{𝑥, 𝑦} ∧ Fun {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
2220, 21mpbiran 709 . . . . . . . . . . . 12 ({⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}–1-1→{𝑥, 𝑦} ↔ Fun {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
2313, 11cnvsn 6248 . . . . . . . . . . . . . . 15 {⟨∅, 𝑥⟩} = {⟨𝑥, ∅⟩}
2414, 12cnvsn 6248 . . . . . . . . . . . . . . 15 {⟨1o, 𝑦⟩} = {⟨𝑦, 1o⟩}
2523, 24uneq12i 4176 . . . . . . . . . . . . . 14 ({⟨∅, 𝑥⟩} ∪ {⟨1o, 𝑦⟩}) = ({⟨𝑥, ∅⟩} ∪ {⟨𝑦, 1o⟩})
26 df-pr 4634 . . . . . . . . . . . . . . . 16 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} = ({⟨∅, 𝑥⟩} ∪ {⟨1o, 𝑦⟩})
2726cnveqi 5888 . . . . . . . . . . . . . . 15 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} = ({⟨∅, 𝑥⟩} ∪ {⟨1o, 𝑦⟩})
28 cnvun 6165 . . . . . . . . . . . . . . 15 ({⟨∅, 𝑥⟩} ∪ {⟨1o, 𝑦⟩}) = ({⟨∅, 𝑥⟩} ∪ {⟨1o, 𝑦⟩})
2927, 28eqtri 2763 . . . . . . . . . . . . . 14 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} = ({⟨∅, 𝑥⟩} ∪ {⟨1o, 𝑦⟩})
30 df-pr 4634 . . . . . . . . . . . . . 14 {⟨𝑥, ∅⟩, ⟨𝑦, 1o⟩} = ({⟨𝑥, ∅⟩} ∪ {⟨𝑦, 1o⟩})
3125, 29, 303eqtr4i 2773 . . . . . . . . . . . . 13 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} = {⟨𝑥, ∅⟩, ⟨𝑦, 1o⟩}
3231funeqi 6589 . . . . . . . . . . . 12 (Fun {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} ↔ Fun {⟨𝑥, ∅⟩, ⟨𝑦, 1o⟩})
3322, 32bitr2i 276 . . . . . . . . . . 11 (Fun {⟨𝑥, ∅⟩, ⟨𝑦, 1o⟩} ↔ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}–1-1→{𝑥, 𝑦})
3415, 16, 333imtr3i 291 . . . . . . . . . 10 𝑥 = 𝑦 → {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}–1-1→{𝑥, 𝑦})
35 prssi 4826 . . . . . . . . . 10 ((𝑥𝑎𝑦𝑎) → {𝑥, 𝑦} ⊆ 𝑎)
36 f1ss 6810 . . . . . . . . . 10 (({⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}–1-1→{𝑥, 𝑦} ∧ {𝑥, 𝑦} ⊆ 𝑎) → {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}–1-1𝑎)
3734, 35, 36syl2an 596 . . . . . . . . 9 ((¬ 𝑥 = 𝑦 ∧ (𝑥𝑎𝑦𝑎)) → {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}–1-1𝑎)
38 prex 5443 . . . . . . . . . 10 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} ∈ V
39 f1eq1 6800 . . . . . . . . . 10 (𝑓 = {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} → (𝑓:{∅, 1o}–1-1𝑎 ↔ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}–1-1𝑎))
4038, 39spcev 3606 . . . . . . . . 9 ({⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}–1-1𝑎 → ∃𝑓 𝑓:{∅, 1o}–1-1𝑎)
4137, 40syl 17 . . . . . . . 8 ((¬ 𝑥 = 𝑦 ∧ (𝑥𝑎𝑦𝑎)) → ∃𝑓 𝑓:{∅, 1o}–1-1𝑎)
42 vex 3482 . . . . . . . . 9 𝑎 ∈ V
4342brdom 9000 . . . . . . . 8 ({∅, 1o} ≼ 𝑎 ↔ ∃𝑓 𝑓:{∅, 1o}–1-1𝑎)
4441, 43sylibr 234 . . . . . . 7 ((¬ 𝑥 = 𝑦 ∧ (𝑥𝑎𝑦𝑎)) → {∅, 1o} ≼ 𝑎)
4544expcom 413 . . . . . 6 ((𝑥𝑎𝑦𝑎) → (¬ 𝑥 = 𝑦 → {∅, 1o} ≼ 𝑎))
4645rexlimivv 3199 . . . . 5 (∃𝑥𝑎𝑦𝑎 ¬ 𝑥 = 𝑦 → {∅, 1o} ≼ 𝑎)
4710, 46eqbrtrid 5183 . . . 4 (∃𝑥𝑎𝑦𝑎 ¬ 𝑥 = 𝑦 → 2o𝑎)
489, 47impbii 209 . . 3 (2o𝑎 ↔ ∃𝑥𝑎𝑦𝑎 ¬ 𝑥 = 𝑦)
496, 8, 483bitr2i 299 . 2 (1o𝑎 ↔ ∃𝑥𝑎𝑦𝑎 ¬ 𝑥 = 𝑦)
501, 3, 49vtoclbg 3557 1 (𝐴𝑉 → (1o𝐴 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wex 1776  wcel 2106  wne 2938  wrex 3068  cun 3961  wss 3963  c0 4339  {csn 4631  {cpr 4633  cop 4637   class class class wbr 5148  ccnv 5688  suc csuc 6388  Fun wfun 6557  wf 6559  1-1wf1 6560  ωcom 7887  1oc1o 8498  2oc2o 8499  cdom 8982  csdm 8983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-om 7888  df-1o 8505  df-2o 8506  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator