Step | Hyp | Ref
| Expression |
1 | | breq2 5085 |
. 2
⊢ (𝑎 = 𝐴 → (1o ≺ 𝑎 ↔ 1o ≺
𝐴)) |
2 | | rexeq 3362 |
. . 3
⊢ (𝑎 = 𝐴 → (∃𝑦 ∈ 𝑎 ¬ 𝑥 = 𝑦 ↔ ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦)) |
3 | 2 | rexeqbi1dv 3360 |
. 2
⊢ (𝑎 = 𝐴 → (∃𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑎 ¬ 𝑥 = 𝑦 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦)) |
4 | | 1onn 8501 |
. . . 4
⊢
1o ∈ ω |
5 | | sucdom 9056 |
. . . 4
⊢
(1o ∈ ω → (1o ≺ 𝑎 ↔ suc 1o
≼ 𝑎)) |
6 | 4, 5 | ax-mp 5 |
. . 3
⊢
(1o ≺ 𝑎 ↔ suc 1o ≼ 𝑎) |
7 | | df-2o 8329 |
. . . 4
⊢
2o = suc 1o |
8 | 7 | breq1i 5088 |
. . 3
⊢
(2o ≼ 𝑎 ↔ suc 1o ≼ 𝑎) |
9 | | 2dom 8855 |
. . . 4
⊢
(2o ≼ 𝑎 → ∃𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑎 ¬ 𝑥 = 𝑦) |
10 | | df2o3 8336 |
. . . . 5
⊢
2o = {∅, 1o} |
11 | | vex 3441 |
. . . . . . . . . . . 12
⊢ 𝑥 ∈ V |
12 | | vex 3441 |
. . . . . . . . . . . 12
⊢ 𝑦 ∈ V |
13 | | 0ex 5240 |
. . . . . . . . . . . 12
⊢ ∅
∈ V |
14 | | 1oex 8338 |
. . . . . . . . . . . 12
⊢
1o ∈ V |
15 | 11, 12, 13, 14 | funpr 6519 |
. . . . . . . . . . 11
⊢ (𝑥 ≠ 𝑦 → Fun {〈𝑥, ∅〉, 〈𝑦, 1o〉}) |
16 | | df-ne 2942 |
. . . . . . . . . . 11
⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦) |
17 | | 1n0 8349 |
. . . . . . . . . . . . . . 15
⊢
1o ≠ ∅ |
18 | 17 | necomi 2996 |
. . . . . . . . . . . . . 14
⊢ ∅
≠ 1o |
19 | 13, 14, 11, 12 | fpr 7058 |
. . . . . . . . . . . . . 14
⊢ (∅
≠ 1o → {〈∅, 𝑥〉, 〈1o, 𝑦〉}:{∅,
1o}⟶{𝑥,
𝑦}) |
20 | 18, 19 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
{〈∅, 𝑥〉, 〈1o, 𝑦〉}:{∅,
1o}⟶{𝑥,
𝑦} |
21 | | df-f1 6463 |
. . . . . . . . . . . . 13
⊢
({〈∅, 𝑥〉, 〈1o, 𝑦〉}:{∅,
1o}–1-1→{𝑥, 𝑦} ↔ ({〈∅, 𝑥〉, 〈1o, 𝑦〉}:{∅,
1o}⟶{𝑥,
𝑦} ∧ Fun ◡{〈∅, 𝑥〉, 〈1o, 𝑦〉})) |
22 | 20, 21 | mpbiran 707 |
. . . . . . . . . . . 12
⊢
({〈∅, 𝑥〉, 〈1o, 𝑦〉}:{∅,
1o}–1-1→{𝑥, 𝑦} ↔ Fun ◡{〈∅, 𝑥〉, 〈1o, 𝑦〉}) |
23 | 13, 11 | cnvsn 6144 |
. . . . . . . . . . . . . . 15
⊢ ◡{〈∅, 𝑥〉} = {〈𝑥, ∅〉} |
24 | 14, 12 | cnvsn 6144 |
. . . . . . . . . . . . . . 15
⊢ ◡{〈1o, 𝑦〉} = {〈𝑦, 1o〉} |
25 | 23, 24 | uneq12i 4101 |
. . . . . . . . . . . . . 14
⊢ (◡{〈∅, 𝑥〉} ∪ ◡{〈1o, 𝑦〉}) = ({〈𝑥, ∅〉} ∪ {〈𝑦,
1o〉}) |
26 | | df-pr 4568 |
. . . . . . . . . . . . . . . 16
⊢
{〈∅, 𝑥〉, 〈1o, 𝑦〉} = ({〈∅, 𝑥〉} ∪
{〈1o, 𝑦〉}) |
27 | 26 | cnveqi 5796 |
. . . . . . . . . . . . . . 15
⊢ ◡{〈∅, 𝑥〉, 〈1o, 𝑦〉} = ◡({〈∅, 𝑥〉} ∪ {〈1o, 𝑦〉}) |
28 | | cnvun 6061 |
. . . . . . . . . . . . . . 15
⊢ ◡({〈∅, 𝑥〉} ∪ {〈1o, 𝑦〉}) = (◡{〈∅, 𝑥〉} ∪ ◡{〈1o, 𝑦〉}) |
29 | 27, 28 | eqtri 2764 |
. . . . . . . . . . . . . 14
⊢ ◡{〈∅, 𝑥〉, 〈1o, 𝑦〉} = (◡{〈∅, 𝑥〉} ∪ ◡{〈1o, 𝑦〉}) |
30 | | df-pr 4568 |
. . . . . . . . . . . . . 14
⊢
{〈𝑥,
∅〉, 〈𝑦,
1o〉} = ({〈𝑥, ∅〉} ∪ {〈𝑦,
1o〉}) |
31 | 25, 29, 30 | 3eqtr4i 2774 |
. . . . . . . . . . . . 13
⊢ ◡{〈∅, 𝑥〉, 〈1o, 𝑦〉} = {〈𝑥, ∅〉, 〈𝑦,
1o〉} |
32 | 31 | funeqi 6484 |
. . . . . . . . . . . 12
⊢ (Fun
◡{〈∅, 𝑥〉, 〈1o, 𝑦〉} ↔ Fun {〈𝑥, ∅〉, 〈𝑦,
1o〉}) |
33 | 22, 32 | bitr2i 276 |
. . . . . . . . . . 11
⊢ (Fun
{〈𝑥, ∅〉,
〈𝑦,
1o〉} ↔ {〈∅, 𝑥〉, 〈1o, 𝑦〉}:{∅,
1o}–1-1→{𝑥, 𝑦}) |
34 | 15, 16, 33 | 3imtr3i 291 |
. . . . . . . . . 10
⊢ (¬
𝑥 = 𝑦 → {〈∅, 𝑥〉, 〈1o, 𝑦〉}:{∅,
1o}–1-1→{𝑥, 𝑦}) |
35 | | prssi 4760 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑎 ∧ 𝑦 ∈ 𝑎) → {𝑥, 𝑦} ⊆ 𝑎) |
36 | | f1ss 6706 |
. . . . . . . . . 10
⊢
(({〈∅, 𝑥〉, 〈1o, 𝑦〉}:{∅,
1o}–1-1→{𝑥, 𝑦} ∧ {𝑥, 𝑦} ⊆ 𝑎) → {〈∅, 𝑥〉, 〈1o, 𝑦〉}:{∅,
1o}–1-1→𝑎) |
37 | 34, 35, 36 | syl2an 597 |
. . . . . . . . 9
⊢ ((¬
𝑥 = 𝑦 ∧ (𝑥 ∈ 𝑎 ∧ 𝑦 ∈ 𝑎)) → {〈∅, 𝑥〉, 〈1o, 𝑦〉}:{∅,
1o}–1-1→𝑎) |
38 | | prex 5364 |
. . . . . . . . . 10
⊢
{〈∅, 𝑥〉, 〈1o, 𝑦〉} ∈
V |
39 | | f1eq1 6695 |
. . . . . . . . . 10
⊢ (𝑓 = {〈∅, 𝑥〉, 〈1o,
𝑦〉} → (𝑓:{∅,
1o}–1-1→𝑎 ↔ {〈∅, 𝑥〉, 〈1o,
𝑦〉}:{∅,
1o}–1-1→𝑎)) |
40 | 38, 39 | spcev 3550 |
. . . . . . . . 9
⊢
({〈∅, 𝑥〉, 〈1o, 𝑦〉}:{∅,
1o}–1-1→𝑎 → ∃𝑓 𝑓:{∅, 1o}–1-1→𝑎) |
41 | 37, 40 | syl 17 |
. . . . . . . 8
⊢ ((¬
𝑥 = 𝑦 ∧ (𝑥 ∈ 𝑎 ∧ 𝑦 ∈ 𝑎)) → ∃𝑓 𝑓:{∅, 1o}–1-1→𝑎) |
42 | | vex 3441 |
. . . . . . . . 9
⊢ 𝑎 ∈ V |
43 | 42 | brdom 8781 |
. . . . . . . 8
⊢
({∅, 1o} ≼ 𝑎 ↔ ∃𝑓 𝑓:{∅, 1o}–1-1→𝑎) |
44 | 41, 43 | sylibr 233 |
. . . . . . 7
⊢ ((¬
𝑥 = 𝑦 ∧ (𝑥 ∈ 𝑎 ∧ 𝑦 ∈ 𝑎)) → {∅, 1o} ≼
𝑎) |
45 | 44 | expcom 415 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑎 ∧ 𝑦 ∈ 𝑎) → (¬ 𝑥 = 𝑦 → {∅, 1o} ≼
𝑎)) |
46 | 45 | rexlimivv 3193 |
. . . . 5
⊢
(∃𝑥 ∈
𝑎 ∃𝑦 ∈ 𝑎 ¬ 𝑥 = 𝑦 → {∅, 1o} ≼
𝑎) |
47 | 10, 46 | eqbrtrid 5116 |
. . . 4
⊢
(∃𝑥 ∈
𝑎 ∃𝑦 ∈ 𝑎 ¬ 𝑥 = 𝑦 → 2o ≼ 𝑎) |
48 | 9, 47 | impbii 208 |
. . 3
⊢
(2o ≼ 𝑎 ↔ ∃𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑎 ¬ 𝑥 = 𝑦) |
49 | 6, 8, 48 | 3bitr2i 299 |
. 2
⊢
(1o ≺ 𝑎 ↔ ∃𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑎 ¬ 𝑥 = 𝑦) |
50 | 1, 3, 49 | vtoclbg 3512 |
1
⊢ (𝐴 ∈ 𝑉 → (1o ≺ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦)) |