| Step | Hyp | Ref
| Expression |
| 1 | | breq2 5129 |
. 2
⊢ (𝑎 = 𝐴 → (1o ≺ 𝑎 ↔ 1o ≺
𝐴)) |
| 2 | | rexeq 3306 |
. . 3
⊢ (𝑎 = 𝐴 → (∃𝑦 ∈ 𝑎 ¬ 𝑥 = 𝑦 ↔ ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦)) |
| 3 | 2 | rexeqbi1dv 3323 |
. 2
⊢ (𝑎 = 𝐴 → (∃𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑎 ¬ 𝑥 = 𝑦 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦)) |
| 4 | | 1onn 8661 |
. . . 4
⊢
1o ∈ ω |
| 5 | | sucdom 9254 |
. . . 4
⊢
(1o ∈ ω → (1o ≺ 𝑎 ↔ suc 1o
≼ 𝑎)) |
| 6 | 4, 5 | ax-mp 5 |
. . 3
⊢
(1o ≺ 𝑎 ↔ suc 1o ≼ 𝑎) |
| 7 | | df-2o 8490 |
. . . 4
⊢
2o = suc 1o |
| 8 | 7 | breq1i 5132 |
. . 3
⊢
(2o ≼ 𝑎 ↔ suc 1o ≼ 𝑎) |
| 9 | | 2dom 9053 |
. . . 4
⊢
(2o ≼ 𝑎 → ∃𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑎 ¬ 𝑥 = 𝑦) |
| 10 | | df2o3 8497 |
. . . . 5
⊢
2o = {∅, 1o} |
| 11 | | vex 3468 |
. . . . . . . . . . . 12
⊢ 𝑥 ∈ V |
| 12 | | vex 3468 |
. . . . . . . . . . . 12
⊢ 𝑦 ∈ V |
| 13 | | 0ex 5289 |
. . . . . . . . . . . 12
⊢ ∅
∈ V |
| 14 | | 1oex 8499 |
. . . . . . . . . . . 12
⊢
1o ∈ V |
| 15 | 11, 12, 13, 14 | funpr 6603 |
. . . . . . . . . . 11
⊢ (𝑥 ≠ 𝑦 → Fun {〈𝑥, ∅〉, 〈𝑦, 1o〉}) |
| 16 | | df-ne 2932 |
. . . . . . . . . . 11
⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦) |
| 17 | | 1n0 8509 |
. . . . . . . . . . . . . . 15
⊢
1o ≠ ∅ |
| 18 | 17 | necomi 2985 |
. . . . . . . . . . . . . 14
⊢ ∅
≠ 1o |
| 19 | 13, 14, 11, 12 | fpr 7155 |
. . . . . . . . . . . . . 14
⊢ (∅
≠ 1o → {〈∅, 𝑥〉, 〈1o, 𝑦〉}:{∅,
1o}⟶{𝑥,
𝑦}) |
| 20 | 18, 19 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
{〈∅, 𝑥〉, 〈1o, 𝑦〉}:{∅,
1o}⟶{𝑥,
𝑦} |
| 21 | | df-f1 6547 |
. . . . . . . . . . . . 13
⊢
({〈∅, 𝑥〉, 〈1o, 𝑦〉}:{∅,
1o}–1-1→{𝑥, 𝑦} ↔ ({〈∅, 𝑥〉, 〈1o, 𝑦〉}:{∅,
1o}⟶{𝑥,
𝑦} ∧ Fun ◡{〈∅, 𝑥〉, 〈1o, 𝑦〉})) |
| 22 | 20, 21 | mpbiran 709 |
. . . . . . . . . . . 12
⊢
({〈∅, 𝑥〉, 〈1o, 𝑦〉}:{∅,
1o}–1-1→{𝑥, 𝑦} ↔ Fun ◡{〈∅, 𝑥〉, 〈1o, 𝑦〉}) |
| 23 | 13, 11 | cnvsn 6228 |
. . . . . . . . . . . . . . 15
⊢ ◡{〈∅, 𝑥〉} = {〈𝑥, ∅〉} |
| 24 | 14, 12 | cnvsn 6228 |
. . . . . . . . . . . . . . 15
⊢ ◡{〈1o, 𝑦〉} = {〈𝑦, 1o〉} |
| 25 | 23, 24 | uneq12i 4148 |
. . . . . . . . . . . . . 14
⊢ (◡{〈∅, 𝑥〉} ∪ ◡{〈1o, 𝑦〉}) = ({〈𝑥, ∅〉} ∪ {〈𝑦,
1o〉}) |
| 26 | | df-pr 4611 |
. . . . . . . . . . . . . . . 16
⊢
{〈∅, 𝑥〉, 〈1o, 𝑦〉} = ({〈∅, 𝑥〉} ∪
{〈1o, 𝑦〉}) |
| 27 | 26 | cnveqi 5867 |
. . . . . . . . . . . . . . 15
⊢ ◡{〈∅, 𝑥〉, 〈1o, 𝑦〉} = ◡({〈∅, 𝑥〉} ∪ {〈1o, 𝑦〉}) |
| 28 | | cnvun 6144 |
. . . . . . . . . . . . . . 15
⊢ ◡({〈∅, 𝑥〉} ∪ {〈1o, 𝑦〉}) = (◡{〈∅, 𝑥〉} ∪ ◡{〈1o, 𝑦〉}) |
| 29 | 27, 28 | eqtri 2757 |
. . . . . . . . . . . . . 14
⊢ ◡{〈∅, 𝑥〉, 〈1o, 𝑦〉} = (◡{〈∅, 𝑥〉} ∪ ◡{〈1o, 𝑦〉}) |
| 30 | | df-pr 4611 |
. . . . . . . . . . . . . 14
⊢
{〈𝑥,
∅〉, 〈𝑦,
1o〉} = ({〈𝑥, ∅〉} ∪ {〈𝑦,
1o〉}) |
| 31 | 25, 29, 30 | 3eqtr4i 2767 |
. . . . . . . . . . . . 13
⊢ ◡{〈∅, 𝑥〉, 〈1o, 𝑦〉} = {〈𝑥, ∅〉, 〈𝑦,
1o〉} |
| 32 | 31 | funeqi 6568 |
. . . . . . . . . . . 12
⊢ (Fun
◡{〈∅, 𝑥〉, 〈1o, 𝑦〉} ↔ Fun {〈𝑥, ∅〉, 〈𝑦,
1o〉}) |
| 33 | 22, 32 | bitr2i 276 |
. . . . . . . . . . 11
⊢ (Fun
{〈𝑥, ∅〉,
〈𝑦,
1o〉} ↔ {〈∅, 𝑥〉, 〈1o, 𝑦〉}:{∅,
1o}–1-1→{𝑥, 𝑦}) |
| 34 | 15, 16, 33 | 3imtr3i 291 |
. . . . . . . . . 10
⊢ (¬
𝑥 = 𝑦 → {〈∅, 𝑥〉, 〈1o, 𝑦〉}:{∅,
1o}–1-1→{𝑥, 𝑦}) |
| 35 | | prssi 4803 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑎 ∧ 𝑦 ∈ 𝑎) → {𝑥, 𝑦} ⊆ 𝑎) |
| 36 | | f1ss 6790 |
. . . . . . . . . 10
⊢
(({〈∅, 𝑥〉, 〈1o, 𝑦〉}:{∅,
1o}–1-1→{𝑥, 𝑦} ∧ {𝑥, 𝑦} ⊆ 𝑎) → {〈∅, 𝑥〉, 〈1o, 𝑦〉}:{∅,
1o}–1-1→𝑎) |
| 37 | 34, 35, 36 | syl2an 596 |
. . . . . . . . 9
⊢ ((¬
𝑥 = 𝑦 ∧ (𝑥 ∈ 𝑎 ∧ 𝑦 ∈ 𝑎)) → {〈∅, 𝑥〉, 〈1o, 𝑦〉}:{∅,
1o}–1-1→𝑎) |
| 38 | | prex 5419 |
. . . . . . . . . 10
⊢
{〈∅, 𝑥〉, 〈1o, 𝑦〉} ∈
V |
| 39 | | f1eq1 6780 |
. . . . . . . . . 10
⊢ (𝑓 = {〈∅, 𝑥〉, 〈1o,
𝑦〉} → (𝑓:{∅,
1o}–1-1→𝑎 ↔ {〈∅, 𝑥〉, 〈1o,
𝑦〉}:{∅,
1o}–1-1→𝑎)) |
| 40 | 38, 39 | spcev 3590 |
. . . . . . . . 9
⊢
({〈∅, 𝑥〉, 〈1o, 𝑦〉}:{∅,
1o}–1-1→𝑎 → ∃𝑓 𝑓:{∅, 1o}–1-1→𝑎) |
| 41 | 37, 40 | syl 17 |
. . . . . . . 8
⊢ ((¬
𝑥 = 𝑦 ∧ (𝑥 ∈ 𝑎 ∧ 𝑦 ∈ 𝑎)) → ∃𝑓 𝑓:{∅, 1o}–1-1→𝑎) |
| 42 | | vex 3468 |
. . . . . . . . 9
⊢ 𝑎 ∈ V |
| 43 | 42 | brdom 8984 |
. . . . . . . 8
⊢
({∅, 1o} ≼ 𝑎 ↔ ∃𝑓 𝑓:{∅, 1o}–1-1→𝑎) |
| 44 | 41, 43 | sylibr 234 |
. . . . . . 7
⊢ ((¬
𝑥 = 𝑦 ∧ (𝑥 ∈ 𝑎 ∧ 𝑦 ∈ 𝑎)) → {∅, 1o} ≼
𝑎) |
| 45 | 44 | expcom 413 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑎 ∧ 𝑦 ∈ 𝑎) → (¬ 𝑥 = 𝑦 → {∅, 1o} ≼
𝑎)) |
| 46 | 45 | rexlimivv 3188 |
. . . . 5
⊢
(∃𝑥 ∈
𝑎 ∃𝑦 ∈ 𝑎 ¬ 𝑥 = 𝑦 → {∅, 1o} ≼
𝑎) |
| 47 | 10, 46 | eqbrtrid 5160 |
. . . 4
⊢
(∃𝑥 ∈
𝑎 ∃𝑦 ∈ 𝑎 ¬ 𝑥 = 𝑦 → 2o ≼ 𝑎) |
| 48 | 9, 47 | impbii 209 |
. . 3
⊢
(2o ≼ 𝑎 ↔ ∃𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑎 ¬ 𝑥 = 𝑦) |
| 49 | 6, 8, 48 | 3bitr2i 299 |
. 2
⊢
(1o ≺ 𝑎 ↔ ∃𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑎 ¬ 𝑥 = 𝑦) |
| 50 | 1, 3, 49 | vtoclbg 3541 |
1
⊢ (𝐴 ∈ 𝑉 → (1o ≺ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦)) |