MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1sdomOLD Structured version   Visualization version   GIF version

Theorem 1sdomOLD 9312
Description: Obsolete version of 1sdom 9311 as of 30-Dec-2024. (Contributed by Mario Carneiro, 12-Jan-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
1sdomOLD (𝐴𝑉 → (1o𝐴 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦))
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem 1sdomOLD
Dummy variables 𝑓 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5170 . 2 (𝑎 = 𝐴 → (1o𝑎 ↔ 1o𝐴))
2 rexeq 3330 . . 3 (𝑎 = 𝐴 → (∃𝑦𝑎 ¬ 𝑥 = 𝑦 ↔ ∃𝑦𝐴 ¬ 𝑥 = 𝑦))
32rexeqbi1dv 3347 . 2 (𝑎 = 𝐴 → (∃𝑥𝑎𝑦𝑎 ¬ 𝑥 = 𝑦 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦))
4 1onn 8696 . . . 4 1o ∈ ω
5 sucdom 9298 . . . 4 (1o ∈ ω → (1o𝑎 ↔ suc 1o𝑎))
64, 5ax-mp 5 . . 3 (1o𝑎 ↔ suc 1o𝑎)
7 df-2o 8523 . . . 4 2o = suc 1o
87breq1i 5173 . . 3 (2o𝑎 ↔ suc 1o𝑎)
9 2dom 9095 . . . 4 (2o𝑎 → ∃𝑥𝑎𝑦𝑎 ¬ 𝑥 = 𝑦)
10 df2o3 8530 . . . . 5 2o = {∅, 1o}
11 vex 3492 . . . . . . . . . . . 12 𝑥 ∈ V
12 vex 3492 . . . . . . . . . . . 12 𝑦 ∈ V
13 0ex 5325 . . . . . . . . . . . 12 ∅ ∈ V
14 1oex 8532 . . . . . . . . . . . 12 1o ∈ V
1511, 12, 13, 14funpr 6634 . . . . . . . . . . 11 (𝑥𝑦 → Fun {⟨𝑥, ∅⟩, ⟨𝑦, 1o⟩})
16 df-ne 2947 . . . . . . . . . . 11 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
17 1n0 8544 . . . . . . . . . . . . . . 15 1o ≠ ∅
1817necomi 3001 . . . . . . . . . . . . . 14 ∅ ≠ 1o
1913, 14, 11, 12fpr 7188 . . . . . . . . . . . . . 14 (∅ ≠ 1o → {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}⟶{𝑥, 𝑦})
2018, 19ax-mp 5 . . . . . . . . . . . . 13 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}⟶{𝑥, 𝑦}
21 df-f1 6578 . . . . . . . . . . . . 13 ({⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}–1-1→{𝑥, 𝑦} ↔ ({⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}⟶{𝑥, 𝑦} ∧ Fun {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
2220, 21mpbiran 708 . . . . . . . . . . . 12 ({⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}–1-1→{𝑥, 𝑦} ↔ Fun {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
2313, 11cnvsn 6257 . . . . . . . . . . . . . . 15 {⟨∅, 𝑥⟩} = {⟨𝑥, ∅⟩}
2414, 12cnvsn 6257 . . . . . . . . . . . . . . 15 {⟨1o, 𝑦⟩} = {⟨𝑦, 1o⟩}
2523, 24uneq12i 4189 . . . . . . . . . . . . . 14 ({⟨∅, 𝑥⟩} ∪ {⟨1o, 𝑦⟩}) = ({⟨𝑥, ∅⟩} ∪ {⟨𝑦, 1o⟩})
26 df-pr 4651 . . . . . . . . . . . . . . . 16 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} = ({⟨∅, 𝑥⟩} ∪ {⟨1o, 𝑦⟩})
2726cnveqi 5899 . . . . . . . . . . . . . . 15 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} = ({⟨∅, 𝑥⟩} ∪ {⟨1o, 𝑦⟩})
28 cnvun 6174 . . . . . . . . . . . . . . 15 ({⟨∅, 𝑥⟩} ∪ {⟨1o, 𝑦⟩}) = ({⟨∅, 𝑥⟩} ∪ {⟨1o, 𝑦⟩})
2927, 28eqtri 2768 . . . . . . . . . . . . . 14 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} = ({⟨∅, 𝑥⟩} ∪ {⟨1o, 𝑦⟩})
30 df-pr 4651 . . . . . . . . . . . . . 14 {⟨𝑥, ∅⟩, ⟨𝑦, 1o⟩} = ({⟨𝑥, ∅⟩} ∪ {⟨𝑦, 1o⟩})
3125, 29, 303eqtr4i 2778 . . . . . . . . . . . . 13 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} = {⟨𝑥, ∅⟩, ⟨𝑦, 1o⟩}
3231funeqi 6599 . . . . . . . . . . . 12 (Fun {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} ↔ Fun {⟨𝑥, ∅⟩, ⟨𝑦, 1o⟩})
3322, 32bitr2i 276 . . . . . . . . . . 11 (Fun {⟨𝑥, ∅⟩, ⟨𝑦, 1o⟩} ↔ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}–1-1→{𝑥, 𝑦})
3415, 16, 333imtr3i 291 . . . . . . . . . 10 𝑥 = 𝑦 → {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}–1-1→{𝑥, 𝑦})
35 prssi 4846 . . . . . . . . . 10 ((𝑥𝑎𝑦𝑎) → {𝑥, 𝑦} ⊆ 𝑎)
36 f1ss 6822 . . . . . . . . . 10 (({⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}–1-1→{𝑥, 𝑦} ∧ {𝑥, 𝑦} ⊆ 𝑎) → {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}–1-1𝑎)
3734, 35, 36syl2an 595 . . . . . . . . 9 ((¬ 𝑥 = 𝑦 ∧ (𝑥𝑎𝑦𝑎)) → {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}–1-1𝑎)
38 prex 5452 . . . . . . . . . 10 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} ∈ V
39 f1eq1 6812 . . . . . . . . . 10 (𝑓 = {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} → (𝑓:{∅, 1o}–1-1𝑎 ↔ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}–1-1𝑎))
4038, 39spcev 3619 . . . . . . . . 9 ({⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}:{∅, 1o}–1-1𝑎 → ∃𝑓 𝑓:{∅, 1o}–1-1𝑎)
4137, 40syl 17 . . . . . . . 8 ((¬ 𝑥 = 𝑦 ∧ (𝑥𝑎𝑦𝑎)) → ∃𝑓 𝑓:{∅, 1o}–1-1𝑎)
42 vex 3492 . . . . . . . . 9 𝑎 ∈ V
4342brdom 9020 . . . . . . . 8 ({∅, 1o} ≼ 𝑎 ↔ ∃𝑓 𝑓:{∅, 1o}–1-1𝑎)
4441, 43sylibr 234 . . . . . . 7 ((¬ 𝑥 = 𝑦 ∧ (𝑥𝑎𝑦𝑎)) → {∅, 1o} ≼ 𝑎)
4544expcom 413 . . . . . 6 ((𝑥𝑎𝑦𝑎) → (¬ 𝑥 = 𝑦 → {∅, 1o} ≼ 𝑎))
4645rexlimivv 3207 . . . . 5 (∃𝑥𝑎𝑦𝑎 ¬ 𝑥 = 𝑦 → {∅, 1o} ≼ 𝑎)
4710, 46eqbrtrid 5201 . . . 4 (∃𝑥𝑎𝑦𝑎 ¬ 𝑥 = 𝑦 → 2o𝑎)
489, 47impbii 209 . . 3 (2o𝑎 ↔ ∃𝑥𝑎𝑦𝑎 ¬ 𝑥 = 𝑦)
496, 8, 483bitr2i 299 . 2 (1o𝑎 ↔ ∃𝑥𝑎𝑦𝑎 ¬ 𝑥 = 𝑦)
501, 3, 49vtoclbg 3569 1 (𝐴𝑉 → (1o𝐴 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wex 1777  wcel 2108  wne 2946  wrex 3076  cun 3974  wss 3976  c0 4352  {csn 4648  {cpr 4650  cop 4654   class class class wbr 5166  ccnv 5699  suc csuc 6397  Fun wfun 6567  wf 6569  1-1wf1 6570  ωcom 7903  1oc1o 8515  2oc2o 8516  cdom 9001  csdm 9002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-2o 8523  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator