Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > op1sta | Structured version Visualization version GIF version |
Description: Extract the first member of an ordered pair. (See op2nda 6120 to extract the second member, op1stb 5380 for an alternate version, and op1st 7812 for the preferred version.) (Contributed by Raph Levien, 4-Dec-2003.) |
Ref | Expression |
---|---|
cnvsn.1 | ⊢ 𝐴 ∈ V |
cnvsn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op1sta | ⊢ ∪ dom {〈𝐴, 𝐵〉} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsn.2 | . . . 4 ⊢ 𝐵 ∈ V | |
2 | 1 | dmsnop 6108 | . . 3 ⊢ dom {〈𝐴, 𝐵〉} = {𝐴} |
3 | 2 | unieqi 4849 | . 2 ⊢ ∪ dom {〈𝐴, 𝐵〉} = ∪ {𝐴} |
4 | cnvsn.1 | . . 3 ⊢ 𝐴 ∈ V | |
5 | 4 | unisn 4858 | . 2 ⊢ ∪ {𝐴} = 𝐴 |
6 | 3, 5 | eqtri 2766 | 1 ⊢ ∪ dom {〈𝐴, 𝐵〉} = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 Vcvv 3422 {csn 4558 〈cop 4564 ∪ cuni 4836 dom cdm 5580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-dm 5590 |
This theorem is referenced by: elxp4 7743 op1st 7812 fo1st 7824 f1stres 7828 xpassen 8806 xpdom2 8807 |
Copyright terms: Public domain | W3C validator |