| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > op1sta | Structured version Visualization version GIF version | ||
| Description: Extract the first member of an ordered pair. (See op2nda 6201 to extract the second member, op1stb 5431 for an alternate version, and op1st 7976 for the preferred version.) (Contributed by Raph Levien, 4-Dec-2003.) |
| Ref | Expression |
|---|---|
| cnvsn.1 | ⊢ 𝐴 ∈ V |
| cnvsn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| op1sta | ⊢ ∪ dom {〈𝐴, 𝐵〉} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvsn.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 2 | 1 | dmsnop 6189 | . . 3 ⊢ dom {〈𝐴, 𝐵〉} = {𝐴} |
| 3 | 2 | unieqi 4883 | . 2 ⊢ ∪ dom {〈𝐴, 𝐵〉} = ∪ {𝐴} |
| 4 | cnvsn.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 5 | 4 | unisn 4890 | . 2 ⊢ ∪ {𝐴} = 𝐴 |
| 6 | 3, 5 | eqtri 2752 | 1 ⊢ ∪ dom {〈𝐴, 𝐵〉} = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3447 {csn 4589 〈cop 4595 ∪ cuni 4871 dom cdm 5638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-dm 5648 |
| This theorem is referenced by: elxp4 7898 op1st 7976 fo1st 7988 f1stres 7992 xpassen 9035 xpdom2 9036 |
| Copyright terms: Public domain | W3C validator |