MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  op1sta Structured version   Visualization version   GIF version

Theorem op1sta 6225
Description: Extract the first member of an ordered pair. (See op2nda 6228 to extract the second member, op1stb 5472 for an alternate version, and op1st 7983 for the preferred version.) (Contributed by Raph Levien, 4-Dec-2003.)
Hypotheses
Ref Expression
cnvsn.1 𝐴 ∈ V
cnvsn.2 𝐵 ∈ V
Assertion
Ref Expression
op1sta dom {⟨𝐴, 𝐵⟩} = 𝐴

Proof of Theorem op1sta
StepHypRef Expression
1 cnvsn.2 . . . 4 𝐵 ∈ V
21dmsnop 6216 . . 3 dom {⟨𝐴, 𝐵⟩} = {𝐴}
32unieqi 4922 . 2 dom {⟨𝐴, 𝐵⟩} = {𝐴}
4 cnvsn.1 . . 3 𝐴 ∈ V
54unisn 4931 . 2 {𝐴} = 𝐴
63, 5eqtri 2761 1 dom {⟨𝐴, 𝐵⟩} = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2107  Vcvv 3475  {csn 4629  cop 4635   cuni 4909  dom cdm 5677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-dm 5687
This theorem is referenced by:  elxp4  7913  op1st  7983  fo1st  7995  f1stres  7999  xpassen  9066  xpdom2  9067
  Copyright terms: Public domain W3C validator