| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > op1sta | Structured version Visualization version GIF version | ||
| Description: Extract the first member of an ordered pair. (See op2nda 6217 to extract the second member, op1stb 5446 for an alternate version, and op1st 7996 for the preferred version.) (Contributed by Raph Levien, 4-Dec-2003.) |
| Ref | Expression |
|---|---|
| cnvsn.1 | ⊢ 𝐴 ∈ V |
| cnvsn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| op1sta | ⊢ ∪ dom {〈𝐴, 𝐵〉} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvsn.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 2 | 1 | dmsnop 6205 | . . 3 ⊢ dom {〈𝐴, 𝐵〉} = {𝐴} |
| 3 | 2 | unieqi 4895 | . 2 ⊢ ∪ dom {〈𝐴, 𝐵〉} = ∪ {𝐴} |
| 4 | cnvsn.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 5 | 4 | unisn 4902 | . 2 ⊢ ∪ {𝐴} = 𝐴 |
| 6 | 3, 5 | eqtri 2758 | 1 ⊢ ∪ dom {〈𝐴, 𝐵〉} = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 Vcvv 3459 {csn 4601 〈cop 4607 ∪ cuni 4883 dom cdm 5654 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-dm 5664 |
| This theorem is referenced by: elxp4 7918 op1st 7996 fo1st 8008 f1stres 8012 xpassen 9080 xpdom2 9081 |
| Copyright terms: Public domain | W3C validator |