![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > op1sta | Structured version Visualization version GIF version |
Description: Extract the first member of an ordered pair. (See op2nda 6234 to extract the second member, op1stb 5473 for an alternate version, and op1st 8002 for the preferred version.) (Contributed by Raph Levien, 4-Dec-2003.) |
Ref | Expression |
---|---|
cnvsn.1 | ⊢ 𝐴 ∈ V |
cnvsn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op1sta | ⊢ ∪ dom {〈𝐴, 𝐵〉} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsn.2 | . . . 4 ⊢ 𝐵 ∈ V | |
2 | 1 | dmsnop 6222 | . . 3 ⊢ dom {〈𝐴, 𝐵〉} = {𝐴} |
3 | 2 | unieqi 4921 | . 2 ⊢ ∪ dom {〈𝐴, 𝐵〉} = ∪ {𝐴} |
4 | cnvsn.1 | . . 3 ⊢ 𝐴 ∈ V | |
5 | 4 | unisn 4930 | . 2 ⊢ ∪ {𝐴} = 𝐴 |
6 | 3, 5 | eqtri 2753 | 1 ⊢ ∪ dom {〈𝐴, 𝐵〉} = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 Vcvv 3461 {csn 4630 〈cop 4636 ∪ cuni 4909 dom cdm 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-dm 5688 |
This theorem is referenced by: elxp4 7930 op1st 8002 fo1st 8014 f1stres 8018 xpassen 9091 xpdom2 9092 |
Copyright terms: Public domain | W3C validator |