MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  op1sta Structured version   Visualization version   GIF version

Theorem op1sta 5802
Description: Extract the first member of an ordered pair. (See op2nda 5806 to extract the second member, op1stb 5095 for an alternate version, and op1st 7374 for the preferred version.) (Contributed by Raph Levien, 4-Dec-2003.)
Hypotheses
Ref Expression
cnvsn.1 𝐴 ∈ V
cnvsn.2 𝐵 ∈ V
Assertion
Ref Expression
op1sta dom {⟨𝐴, 𝐵⟩} = 𝐴

Proof of Theorem op1sta
StepHypRef Expression
1 cnvsn.2 . . . 4 𝐵 ∈ V
21dmsnop 5793 . . 3 dom {⟨𝐴, 𝐵⟩} = {𝐴}
32unieqi 4603 . 2 dom {⟨𝐴, 𝐵⟩} = {𝐴}
4 cnvsn.1 . . 3 𝐴 ∈ V
54unisn 4610 . 2 {𝐴} = 𝐴
63, 5eqtri 2787 1 dom {⟨𝐴, 𝐵⟩} = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1652  wcel 2155  Vcvv 3350  {csn 4334  cop 4340   cuni 4594  dom cdm 5277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pr 5062
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-rex 3061  df-rab 3064  df-v 3352  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-br 4810  df-dm 5287
This theorem is referenced by:  elxp4  7308  op1st  7374  fo1st  7386  f1stres  7390  xpassen  8261  xpdom2  8262
  Copyright terms: Public domain W3C validator