![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > op1sta | Structured version Visualization version GIF version |
Description: Extract the first member of an ordered pair. (See op2nda 6228 to extract the second member, op1stb 5472 for an alternate version, and op1st 7987 for the preferred version.) (Contributed by Raph Levien, 4-Dec-2003.) |
Ref | Expression |
---|---|
cnvsn.1 | ⊢ 𝐴 ∈ V |
cnvsn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op1sta | ⊢ ∪ dom {⟨𝐴, 𝐵⟩} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsn.2 | . . . 4 ⊢ 𝐵 ∈ V | |
2 | 1 | dmsnop 6216 | . . 3 ⊢ dom {⟨𝐴, 𝐵⟩} = {𝐴} |
3 | 2 | unieqi 4922 | . 2 ⊢ ∪ dom {⟨𝐴, 𝐵⟩} = ∪ {𝐴} |
4 | cnvsn.1 | . . 3 ⊢ 𝐴 ∈ V | |
5 | 4 | unisn 4931 | . 2 ⊢ ∪ {𝐴} = 𝐴 |
6 | 3, 5 | eqtri 2758 | 1 ⊢ ∪ dom {⟨𝐴, 𝐵⟩} = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 Vcvv 3472 {csn 4629 ⟨cop 4635 ∪ cuni 4909 dom cdm 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-dm 5687 |
This theorem is referenced by: elxp4 7917 op1st 7987 fo1st 7999 f1stres 8003 xpassen 9070 xpdom2 9071 |
Copyright terms: Public domain | W3C validator |