| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > op1sta | Structured version Visualization version GIF version | ||
| Description: Extract the first member of an ordered pair. (See op2nda 6175 to extract the second member, op1stb 5409 for an alternate version, and op1st 7929 for the preferred version.) (Contributed by Raph Levien, 4-Dec-2003.) |
| Ref | Expression |
|---|---|
| cnvsn.1 | ⊢ 𝐴 ∈ V |
| cnvsn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| op1sta | ⊢ ∪ dom {〈𝐴, 𝐵〉} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvsn.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 2 | 1 | dmsnop 6163 | . . 3 ⊢ dom {〈𝐴, 𝐵〉} = {𝐴} |
| 3 | 2 | unieqi 4868 | . 2 ⊢ ∪ dom {〈𝐴, 𝐵〉} = ∪ {𝐴} |
| 4 | cnvsn.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 5 | 4 | unisn 4875 | . 2 ⊢ ∪ {𝐴} = 𝐴 |
| 6 | 3, 5 | eqtri 2754 | 1 ⊢ ∪ dom {〈𝐴, 𝐵〉} = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4573 〈cop 4579 ∪ cuni 4856 dom cdm 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-dm 5624 |
| This theorem is referenced by: elxp4 7852 op1st 7929 fo1st 7941 f1stres 7945 xpassen 8984 xpdom2 8985 |
| Copyright terms: Public domain | W3C validator |