![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > op1sta | Structured version Visualization version GIF version |
Description: Extract the first member of an ordered pair. (See op2nda 6228 to extract the second member, op1stb 5472 for an alternate version, and op1st 7983 for the preferred version.) (Contributed by Raph Levien, 4-Dec-2003.) |
Ref | Expression |
---|---|
cnvsn.1 | ⊢ 𝐴 ∈ V |
cnvsn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
op1sta | ⊢ ∪ dom {⟨𝐴, 𝐵⟩} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsn.2 | . . . 4 ⊢ 𝐵 ∈ V | |
2 | 1 | dmsnop 6216 | . . 3 ⊢ dom {⟨𝐴, 𝐵⟩} = {𝐴} |
3 | 2 | unieqi 4922 | . 2 ⊢ ∪ dom {⟨𝐴, 𝐵⟩} = ∪ {𝐴} |
4 | cnvsn.1 | . . 3 ⊢ 𝐴 ∈ V | |
5 | 4 | unisn 4931 | . 2 ⊢ ∪ {𝐴} = 𝐴 |
6 | 3, 5 | eqtri 2761 | 1 ⊢ ∪ dom {⟨𝐴, 𝐵⟩} = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 Vcvv 3475 {csn 4629 ⟨cop 4635 ∪ cuni 4909 dom cdm 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-dm 5687 |
This theorem is referenced by: elxp4 7913 op1st 7983 fo1st 7995 f1stres 7999 xpassen 9066 xpdom2 9067 |
Copyright terms: Public domain | W3C validator |