MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1osn Structured version   Visualization version   GIF version

Theorem f1osn 6822
Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by NM, 18-May-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
f1osn.1 𝐴 ∈ V
f1osn.2 𝐵 ∈ V
Assertion
Ref Expression
f1osn {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}

Proof of Theorem f1osn
StepHypRef Expression
1 f1osn.1 . . 3 𝐴 ∈ V
2 f1osn.2 . . 3 𝐵 ∈ V
31, 2fnsn 6558 . 2 {⟨𝐴, 𝐵⟩} Fn {𝐴}
42, 1fnsn 6558 . . 3 {⟨𝐵, 𝐴⟩} Fn {𝐵}
51, 2cnvsn 6187 . . . 4 {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}
65fneq1i 6597 . . 3 ({⟨𝐴, 𝐵⟩} Fn {𝐵} ↔ {⟨𝐵, 𝐴⟩} Fn {𝐵})
74, 6mpbir 231 . 2 {⟨𝐴, 𝐵⟩} Fn {𝐵}
8 dff1o4 6790 . 2 ({⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵} ↔ ({⟨𝐴, 𝐵⟩} Fn {𝐴} ∧ {⟨𝐴, 𝐵⟩} Fn {𝐵}))
93, 7, 8mpbir2an 711 1 {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3444  {csn 4585  cop 4591  ccnv 5630   Fn wfn 6494  1-1-ontowf1o 6498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506
This theorem is referenced by:  f1osng  6823  fsn  7089  ensn1  8969  pssnn  9109  isinf  9183  isinfOLD  9184  ac6sfi  9207  marypha1lem  9360  hashf1lem1  14396  0ram  16967  mdet0f1o  22456  imasdsf1olem  24237  istrkg2ld  28363  axlowdimlem10  28854  subfacp1lem5  35144  poimirlem3  37590  grposnOLD  37849
  Copyright terms: Public domain W3C validator