Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1osn | Structured version Visualization version GIF version |
Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by NM, 18-May-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
f1osn.1 | ⊢ 𝐴 ∈ V |
f1osn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
f1osn | ⊢ {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1osn.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | f1osn.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | fnsn 6398 | . 2 ⊢ {〈𝐴, 𝐵〉} Fn {𝐴} |
4 | 2, 1 | fnsn 6398 | . . 3 ⊢ {〈𝐵, 𝐴〉} Fn {𝐵} |
5 | 1, 2 | cnvsn 6060 | . . . 4 ⊢ ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉} |
6 | 5 | fneq1i 6436 | . . 3 ⊢ (◡{〈𝐴, 𝐵〉} Fn {𝐵} ↔ {〈𝐵, 𝐴〉} Fn {𝐵}) |
7 | 4, 6 | mpbir 234 | . 2 ⊢ ◡{〈𝐴, 𝐵〉} Fn {𝐵} |
8 | dff1o4 6615 | . 2 ⊢ ({〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵} ↔ ({〈𝐴, 𝐵〉} Fn {𝐴} ∧ ◡{〈𝐴, 𝐵〉} Fn {𝐵})) | |
9 | 3, 7, 8 | mpbir2an 710 | 1 ⊢ {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2111 Vcvv 3409 {csn 4525 〈cop 4531 ◡ccnv 5527 Fn wfn 6335 –1-1-onto→wf1o 6339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-v 3411 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-br 5037 df-opab 5099 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 |
This theorem is referenced by: f1osng 6647 fsn 6894 ensn1 8605 phplem2 8732 pssnn 8751 isinf 8782 pssnnOLD 8787 ac6sfi 8808 marypha1lem 8943 hashf1lem1 13877 hashf1lem1OLD 13878 0ram 16425 mdet0f1o 21307 imasdsf1olem 23089 istrkg2ld 26367 axlowdimlem10 26858 subfacp1lem5 32675 poimirlem3 35375 grposnOLD 35635 |
Copyright terms: Public domain | W3C validator |