| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1osn | Structured version Visualization version GIF version | ||
| Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by NM, 18-May-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| f1osn.1 | ⊢ 𝐴 ∈ V |
| f1osn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| f1osn | ⊢ {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1osn.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | f1osn.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | fnsn 6574 | . 2 ⊢ {〈𝐴, 𝐵〉} Fn {𝐴} |
| 4 | 2, 1 | fnsn 6574 | . . 3 ⊢ {〈𝐵, 𝐴〉} Fn {𝐵} |
| 5 | 1, 2 | cnvsn 6199 | . . . 4 ⊢ ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉} |
| 6 | 5 | fneq1i 6615 | . . 3 ⊢ (◡{〈𝐴, 𝐵〉} Fn {𝐵} ↔ {〈𝐵, 𝐴〉} Fn {𝐵}) |
| 7 | 4, 6 | mpbir 231 | . 2 ⊢ ◡{〈𝐴, 𝐵〉} Fn {𝐵} |
| 8 | dff1o4 6808 | . 2 ⊢ ({〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵} ↔ ({〈𝐴, 𝐵〉} Fn {𝐴} ∧ ◡{〈𝐴, 𝐵〉} Fn {𝐵})) | |
| 9 | 3, 7, 8 | mpbir2an 711 | 1 ⊢ {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 {csn 4589 〈cop 4595 ◡ccnv 5637 Fn wfn 6506 –1-1-onto→wf1o 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 |
| This theorem is referenced by: f1osng 6841 fsn 7107 ensn1 8992 pssnn 9132 isinf 9207 isinfOLD 9208 ac6sfi 9231 marypha1lem 9384 hashf1lem1 14420 0ram 16991 mdet0f1o 22480 imasdsf1olem 24261 istrkg2ld 28387 axlowdimlem10 28878 subfacp1lem5 35171 poimirlem3 37617 grposnOLD 37876 |
| Copyright terms: Public domain | W3C validator |