MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1osn Structured version   Visualization version   GIF version

Theorem f1osn 6843
Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by NM, 18-May-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
f1osn.1 𝐴 ∈ V
f1osn.2 𝐵 ∈ V
Assertion
Ref Expression
f1osn {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}

Proof of Theorem f1osn
StepHypRef Expression
1 f1osn.1 . . 3 𝐴 ∈ V
2 f1osn.2 . . 3 𝐵 ∈ V
31, 2fnsn 6577 . 2 {⟨𝐴, 𝐵⟩} Fn {𝐴}
42, 1fnsn 6577 . . 3 {⟨𝐵, 𝐴⟩} Fn {𝐵}
51, 2cnvsn 6202 . . . 4 {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}
65fneq1i 6618 . . 3 ({⟨𝐴, 𝐵⟩} Fn {𝐵} ↔ {⟨𝐵, 𝐴⟩} Fn {𝐵})
74, 6mpbir 231 . 2 {⟨𝐴, 𝐵⟩} Fn {𝐵}
8 dff1o4 6811 . 2 ({⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵} ↔ ({⟨𝐴, 𝐵⟩} Fn {𝐴} ∧ {⟨𝐴, 𝐵⟩} Fn {𝐵}))
93, 7, 8mpbir2an 711 1 {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3450  {csn 4592  cop 4598  ccnv 5640   Fn wfn 6509  1-1-ontowf1o 6513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521
This theorem is referenced by:  f1osng  6844  fsn  7110  ensn1  8995  pssnn  9138  isinf  9214  isinfOLD  9215  ac6sfi  9238  marypha1lem  9391  hashf1lem1  14427  0ram  16998  mdet0f1o  22487  imasdsf1olem  24268  istrkg2ld  28394  axlowdimlem10  28885  subfacp1lem5  35178  poimirlem3  37624  grposnOLD  37883
  Copyright terms: Public domain W3C validator