| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1osn | Structured version Visualization version GIF version | ||
| Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by NM, 18-May-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| f1osn.1 | ⊢ 𝐴 ∈ V |
| f1osn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| f1osn | ⊢ {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1osn.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | f1osn.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | fnsn 6547 | . 2 ⊢ {〈𝐴, 𝐵〉} Fn {𝐴} |
| 4 | 2, 1 | fnsn 6547 | . . 3 ⊢ {〈𝐵, 𝐴〉} Fn {𝐵} |
| 5 | 1, 2 | cnvsn 6181 | . . . 4 ⊢ ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉} |
| 6 | 5 | fneq1i 6586 | . . 3 ⊢ (◡{〈𝐴, 𝐵〉} Fn {𝐵} ↔ {〈𝐵, 𝐴〉} Fn {𝐵}) |
| 7 | 4, 6 | mpbir 231 | . 2 ⊢ ◡{〈𝐴, 𝐵〉} Fn {𝐵} |
| 8 | dff1o4 6779 | . 2 ⊢ ({〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵} ↔ ({〈𝐴, 𝐵〉} Fn {𝐴} ∧ ◡{〈𝐴, 𝐵〉} Fn {𝐵})) | |
| 9 | 3, 7, 8 | mpbir2an 711 | 1 ⊢ {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 Vcvv 3437 {csn 4577 〈cop 4583 ◡ccnv 5620 Fn wfn 6484 –1-1-onto→wf1o 6488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 |
| This theorem is referenced by: f1osng 6813 fsn 7077 ensn1 8954 pssnn 9089 isinf 9160 ac6sfi 9179 marypha1lem 9328 hashf1lem1 14369 0ram 16939 mdet0f1o 22528 imasdsf1olem 24308 istrkg2ld 28458 axlowdimlem10 28950 subfacp1lem5 35300 poimirlem3 37736 grposnOLD 37995 |
| Copyright terms: Public domain | W3C validator |