Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1osn | Structured version Visualization version GIF version |
Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by NM, 18-May-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
f1osn.1 | ⊢ 𝐴 ∈ V |
f1osn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
f1osn | ⊢ {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1osn.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | f1osn.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | fnsn 6476 | . 2 ⊢ {〈𝐴, 𝐵〉} Fn {𝐴} |
4 | 2, 1 | fnsn 6476 | . . 3 ⊢ {〈𝐵, 𝐴〉} Fn {𝐵} |
5 | 1, 2 | cnvsn 6118 | . . . 4 ⊢ ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉} |
6 | 5 | fneq1i 6514 | . . 3 ⊢ (◡{〈𝐴, 𝐵〉} Fn {𝐵} ↔ {〈𝐵, 𝐴〉} Fn {𝐵}) |
7 | 4, 6 | mpbir 230 | . 2 ⊢ ◡{〈𝐴, 𝐵〉} Fn {𝐵} |
8 | dff1o4 6708 | . 2 ⊢ ({〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵} ↔ ({〈𝐴, 𝐵〉} Fn {𝐴} ∧ ◡{〈𝐴, 𝐵〉} Fn {𝐵})) | |
9 | 3, 7, 8 | mpbir2an 707 | 1 ⊢ {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3422 {csn 4558 〈cop 4564 ◡ccnv 5579 Fn wfn 6413 –1-1-onto→wf1o 6417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 |
This theorem is referenced by: f1osng 6740 fsn 6989 ensn1 8761 ensn1OLD 8762 phplem2 8893 pssnn 8913 isinf 8965 pssnnOLD 8969 ac6sfi 8988 marypha1lem 9122 hashf1lem1 14096 hashf1lem1OLD 14097 0ram 16649 mdet0f1o 21650 imasdsf1olem 23434 istrkg2ld 26725 axlowdimlem10 27222 subfacp1lem5 33046 poimirlem3 35707 grposnOLD 35967 |
Copyright terms: Public domain | W3C validator |