MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1osn Structured version   Visualization version   GIF version

Theorem f1osn 6798
Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by NM, 18-May-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
f1osn.1 𝐴 ∈ V
f1osn.2 𝐵 ∈ V
Assertion
Ref Expression
f1osn {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}

Proof of Theorem f1osn
StepHypRef Expression
1 f1osn.1 . . 3 𝐴 ∈ V
2 f1osn.2 . . 3 𝐵 ∈ V
31, 2fnsn 6534 . 2 {⟨𝐴, 𝐵⟩} Fn {𝐴}
42, 1fnsn 6534 . . 3 {⟨𝐵, 𝐴⟩} Fn {𝐵}
51, 2cnvsn 6168 . . . 4 {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}
65fneq1i 6573 . . 3 ({⟨𝐴, 𝐵⟩} Fn {𝐵} ↔ {⟨𝐵, 𝐴⟩} Fn {𝐵})
74, 6mpbir 231 . 2 {⟨𝐴, 𝐵⟩} Fn {𝐵}
8 dff1o4 6766 . 2 ({⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵} ↔ ({⟨𝐴, 𝐵⟩} Fn {𝐴} ∧ {⟨𝐴, 𝐵⟩} Fn {𝐵}))
93, 7, 8mpbir2an 711 1 {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  Vcvv 3436  {csn 4571  cop 4577  ccnv 5610   Fn wfn 6471  1-1-ontowf1o 6475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483
This theorem is referenced by:  f1osng  6799  fsn  7063  ensn1  8938  pssnn  9073  isinf  9144  ac6sfi  9163  marypha1lem  9312  hashf1lem1  14357  0ram  16927  mdet0f1o  22503  imasdsf1olem  24283  istrkg2ld  28433  axlowdimlem10  28924  subfacp1lem5  35220  poimirlem3  37663  grposnOLD  37922
  Copyright terms: Public domain W3C validator