MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1osn Structured version   Visualization version   GIF version

Theorem f1osn 6739
Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by NM, 18-May-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
f1osn.1 𝐴 ∈ V
f1osn.2 𝐵 ∈ V
Assertion
Ref Expression
f1osn {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}

Proof of Theorem f1osn
StepHypRef Expression
1 f1osn.1 . . 3 𝐴 ∈ V
2 f1osn.2 . . 3 𝐵 ∈ V
31, 2fnsn 6476 . 2 {⟨𝐴, 𝐵⟩} Fn {𝐴}
42, 1fnsn 6476 . . 3 {⟨𝐵, 𝐴⟩} Fn {𝐵}
51, 2cnvsn 6118 . . . 4 {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}
65fneq1i 6514 . . 3 ({⟨𝐴, 𝐵⟩} Fn {𝐵} ↔ {⟨𝐵, 𝐴⟩} Fn {𝐵})
74, 6mpbir 230 . 2 {⟨𝐴, 𝐵⟩} Fn {𝐵}
8 dff1o4 6708 . 2 ({⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵} ↔ ({⟨𝐴, 𝐵⟩} Fn {𝐴} ∧ {⟨𝐴, 𝐵⟩} Fn {𝐵}))
93, 7, 8mpbir2an 707 1 {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵}
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Vcvv 3422  {csn 4558  cop 4564  ccnv 5579   Fn wfn 6413  1-1-ontowf1o 6417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425
This theorem is referenced by:  f1osng  6740  fsn  6989  ensn1  8761  ensn1OLD  8762  phplem2  8893  pssnn  8913  isinf  8965  pssnnOLD  8969  ac6sfi  8988  marypha1lem  9122  hashf1lem1  14096  hashf1lem1OLD  14097  0ram  16649  mdet0f1o  21650  imasdsf1olem  23434  istrkg2ld  26725  axlowdimlem10  27222  subfacp1lem5  33046  poimirlem3  35707  grposnOLD  35967
  Copyright terms: Public domain W3C validator