| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1osn | Structured version Visualization version GIF version | ||
| Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by NM, 18-May-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| f1osn.1 | ⊢ 𝐴 ∈ V |
| f1osn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| f1osn | ⊢ {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1osn.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | f1osn.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | fnsn 6594 | . 2 ⊢ {〈𝐴, 𝐵〉} Fn {𝐴} |
| 4 | 2, 1 | fnsn 6594 | . . 3 ⊢ {〈𝐵, 𝐴〉} Fn {𝐵} |
| 5 | 1, 2 | cnvsn 6215 | . . . 4 ⊢ ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉} |
| 6 | 5 | fneq1i 6635 | . . 3 ⊢ (◡{〈𝐴, 𝐵〉} Fn {𝐵} ↔ {〈𝐵, 𝐴〉} Fn {𝐵}) |
| 7 | 4, 6 | mpbir 231 | . 2 ⊢ ◡{〈𝐴, 𝐵〉} Fn {𝐵} |
| 8 | dff1o4 6826 | . 2 ⊢ ({〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵} ↔ ({〈𝐴, 𝐵〉} Fn {𝐴} ∧ ◡{〈𝐴, 𝐵〉} Fn {𝐵})) | |
| 9 | 3, 7, 8 | mpbir2an 711 | 1 ⊢ {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Vcvv 3459 {csn 4601 〈cop 4607 ◡ccnv 5653 Fn wfn 6526 –1-1-onto→wf1o 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 |
| This theorem is referenced by: f1osng 6859 fsn 7125 ensn1 9035 pssnn 9182 phplem2OLD 9229 isinf 9268 isinfOLD 9269 ac6sfi 9292 marypha1lem 9445 hashf1lem1 14473 0ram 17040 mdet0f1o 22531 imasdsf1olem 24312 istrkg2ld 28439 axlowdimlem10 28930 subfacp1lem5 35206 poimirlem3 37647 grposnOLD 37906 |
| Copyright terms: Public domain | W3C validator |