![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1osn | Structured version Visualization version GIF version |
Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by NM, 18-May-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
f1osn.1 | ⊢ 𝐴 ∈ V |
f1osn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
f1osn | ⊢ {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1osn.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | f1osn.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | fnsn 6607 | . 2 ⊢ {⟨𝐴, 𝐵⟩} Fn {𝐴} |
4 | 2, 1 | fnsn 6607 | . . 3 ⊢ {⟨𝐵, 𝐴⟩} Fn {𝐵} |
5 | 1, 2 | cnvsn 6226 | . . . 4 ⊢ ◡{⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩} |
6 | 5 | fneq1i 6647 | . . 3 ⊢ (◡{⟨𝐴, 𝐵⟩} Fn {𝐵} ↔ {⟨𝐵, 𝐴⟩} Fn {𝐵}) |
7 | 4, 6 | mpbir 230 | . 2 ⊢ ◡{⟨𝐴, 𝐵⟩} Fn {𝐵} |
8 | dff1o4 6842 | . 2 ⊢ ({⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵} ↔ ({⟨𝐴, 𝐵⟩} Fn {𝐴} ∧ ◡{⟨𝐴, 𝐵⟩} Fn {𝐵})) | |
9 | 3, 7, 8 | mpbir2an 710 | 1 ⊢ {⟨𝐴, 𝐵⟩}:{𝐴}–1-1-onto→{𝐵} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 Vcvv 3475 {csn 4629 ⟨cop 4635 ◡ccnv 5676 Fn wfn 6539 –1-1-onto→wf1o 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-mo 2535 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 |
This theorem is referenced by: f1osng 6875 fsn 7133 ensn1 9017 ensn1OLD 9018 pssnn 9168 phplem2OLD 9218 isinf 9260 isinfOLD 9261 pssnnOLD 9265 ac6sfi 9287 marypha1lem 9428 hashf1lem1 14415 hashf1lem1OLD 14416 0ram 16953 mdet0f1o 22095 imasdsf1olem 23879 istrkg2ld 27711 axlowdimlem10 28209 subfacp1lem5 34175 poimirlem3 36491 grposnOLD 36750 |
Copyright terms: Public domain | W3C validator |