| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1osn | Structured version Visualization version GIF version | ||
| Description: A singleton of an ordered pair is one-to-one onto function. (Contributed by NM, 18-May-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| f1osn.1 | ⊢ 𝐴 ∈ V |
| f1osn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| f1osn | ⊢ {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1osn.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | f1osn.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | fnsn 6558 | . 2 ⊢ {〈𝐴, 𝐵〉} Fn {𝐴} |
| 4 | 2, 1 | fnsn 6558 | . . 3 ⊢ {〈𝐵, 𝐴〉} Fn {𝐵} |
| 5 | 1, 2 | cnvsn 6187 | . . . 4 ⊢ ◡{〈𝐴, 𝐵〉} = {〈𝐵, 𝐴〉} |
| 6 | 5 | fneq1i 6597 | . . 3 ⊢ (◡{〈𝐴, 𝐵〉} Fn {𝐵} ↔ {〈𝐵, 𝐴〉} Fn {𝐵}) |
| 7 | 4, 6 | mpbir 231 | . 2 ⊢ ◡{〈𝐴, 𝐵〉} Fn {𝐵} |
| 8 | dff1o4 6790 | . 2 ⊢ ({〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵} ↔ ({〈𝐴, 𝐵〉} Fn {𝐴} ∧ ◡{〈𝐴, 𝐵〉} Fn {𝐵})) | |
| 9 | 3, 7, 8 | mpbir2an 711 | 1 ⊢ {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3444 {csn 4585 〈cop 4591 ◡ccnv 5630 Fn wfn 6494 –1-1-onto→wf1o 6498 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 |
| This theorem is referenced by: f1osng 6823 fsn 7089 ensn1 8969 pssnn 9109 isinf 9183 isinfOLD 9184 ac6sfi 9207 marypha1lem 9360 hashf1lem1 14396 0ram 16967 mdet0f1o 22456 imasdsf1olem 24237 istrkg2ld 28363 axlowdimlem10 28854 subfacp1lem5 35144 poimirlem3 37590 grposnOLD 37849 |
| Copyright terms: Public domain | W3C validator |