MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvfi Structured version   Visualization version   GIF version

Theorem cnvfi 8924
Description: If a set is finite, its converse is as well. (Contributed by Mario Carneiro, 28-Dec-2014.) Avoid ax-pow 5283. (Revised by BTernaryTau, 9-Sep-2024.)
Assertion
Ref Expression
cnvfi (𝐴 ∈ Fin → 𝐴 ∈ Fin)

Proof of Theorem cnvfi
Dummy variables 𝑥 𝑦 𝑧 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnveq 5771 . . 3 (𝑥 = ∅ → 𝑥 = ∅)
21eleq1d 2823 . 2 (𝑥 = ∅ → (𝑥 ∈ Fin ↔ ∅ ∈ Fin))
3 cnveq 5771 . . 3 (𝑥 = 𝑦𝑥 = 𝑦)
43eleq1d 2823 . 2 (𝑥 = 𝑦 → (𝑥 ∈ Fin ↔ 𝑦 ∈ Fin))
5 cnveq 5771 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → 𝑥 = (𝑦 ∪ {𝑧}))
65eleq1d 2823 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥 ∈ Fin ↔ (𝑦 ∪ {𝑧}) ∈ Fin))
7 cnveq 5771 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
87eleq1d 2823 . 2 (𝑥 = 𝐴 → (𝑥 ∈ Fin ↔ 𝐴 ∈ Fin))
9 cnv0 6033 . . 3 ∅ = ∅
10 0fin 8916 . . 3 ∅ ∈ Fin
119, 10eqeltri 2835 . 2 ∅ ∈ Fin
12 cnvun 6035 . . . 4 (𝑦 ∪ {𝑧}) = (𝑦{𝑧})
13 elvv 5652 . . . . . . 7 (𝑧 ∈ (V × V) ↔ ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
14 sneq 4568 . . . . . . . . . 10 (𝑧 = ⟨𝑢, 𝑣⟩ → {𝑧} = {⟨𝑢, 𝑣⟩})
15 cnveq 5771 . . . . . . . . . . 11 ({𝑧} = {⟨𝑢, 𝑣⟩} → {𝑧} = {⟨𝑢, 𝑣⟩})
16 vex 3426 . . . . . . . . . . . 12 𝑢 ∈ V
17 vex 3426 . . . . . . . . . . . 12 𝑣 ∈ V
1816, 17cnvsn 6118 . . . . . . . . . . 11 {⟨𝑢, 𝑣⟩} = {⟨𝑣, 𝑢⟩}
1915, 18eqtrdi 2795 . . . . . . . . . 10 ({𝑧} = {⟨𝑢, 𝑣⟩} → {𝑧} = {⟨𝑣, 𝑢⟩})
2014, 19syl 17 . . . . . . . . 9 (𝑧 = ⟨𝑢, 𝑣⟩ → {𝑧} = {⟨𝑣, 𝑢⟩})
21 snfi 8788 . . . . . . . . 9 {⟨𝑣, 𝑢⟩} ∈ Fin
2220, 21eqeltrdi 2847 . . . . . . . 8 (𝑧 = ⟨𝑢, 𝑣⟩ → {𝑧} ∈ Fin)
2322exlimivv 1936 . . . . . . 7 (∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩ → {𝑧} ∈ Fin)
2413, 23sylbi 216 . . . . . 6 (𝑧 ∈ (V × V) → {𝑧} ∈ Fin)
25 dfdm4 5793 . . . . . . . . 9 dom {𝑧} = ran {𝑧}
26 dmsnn0 6099 . . . . . . . . . . 11 (𝑧 ∈ (V × V) ↔ dom {𝑧} ≠ ∅)
2726biimpri 227 . . . . . . . . . 10 (dom {𝑧} ≠ ∅ → 𝑧 ∈ (V × V))
2827necon1bi 2971 . . . . . . . . 9 𝑧 ∈ (V × V) → dom {𝑧} = ∅)
2925, 28eqtr3id 2793 . . . . . . . 8 𝑧 ∈ (V × V) → ran {𝑧} = ∅)
30 relcnv 6001 . . . . . . . . 9 Rel {𝑧}
31 relrn0 5867 . . . . . . . . 9 (Rel {𝑧} → ({𝑧} = ∅ ↔ ran {𝑧} = ∅))
3230, 31ax-mp 5 . . . . . . . 8 ({𝑧} = ∅ ↔ ran {𝑧} = ∅)
3329, 32sylibr 233 . . . . . . 7 𝑧 ∈ (V × V) → {𝑧} = ∅)
3433, 10eqeltrdi 2847 . . . . . 6 𝑧 ∈ (V × V) → {𝑧} ∈ Fin)
3524, 34pm2.61i 182 . . . . 5 {𝑧} ∈ Fin
36 unfi 8917 . . . . 5 ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝑦{𝑧}) ∈ Fin)
3735, 36mpan2 687 . . . 4 (𝑦 ∈ Fin → (𝑦{𝑧}) ∈ Fin)
3812, 37eqeltrid 2843 . . 3 (𝑦 ∈ Fin → (𝑦 ∪ {𝑧}) ∈ Fin)
3938a1i 11 . 2 (𝑦 ∈ Fin → (𝑦 ∈ Fin → (𝑦 ∪ {𝑧}) ∈ Fin))
402, 4, 6, 8, 11, 39findcard2 8909 1 (𝐴 ∈ Fin → 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1539  wex 1783  wcel 2108  wne 2942  Vcvv 3422  cun 3881  c0 4253  {csn 4558  cop 4564   × cxp 5578  ccnv 5579  dom cdm 5580  ran crn 5581  Rel wrel 5585  Fincfn 8691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-en 8692  df-fin 8695
This theorem is referenced by:  f1oenfirn  8927  f1domfi  8928  sbthfilem  8941  rnfi  9032  fsumcnv  15413  fprodcnv  15621  gsumcom3  19494  gsummpt2co  31210  gsumhashmul  31218
  Copyright terms: Public domain W3C validator