MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvfi Structured version   Visualization version   GIF version

Theorem cnvfi 9243
Description: If a set is finite, its converse is as well. (Contributed by Mario Carneiro, 28-Dec-2014.) Avoid ax-pow 5383. (Revised by BTernaryTau, 9-Sep-2024.)
Assertion
Ref Expression
cnvfi (𝐴 ∈ Fin → 𝐴 ∈ Fin)

Proof of Theorem cnvfi
Dummy variables 𝑥 𝑦 𝑧 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnveq 5898 . . 3 (𝑥 = ∅ → 𝑥 = ∅)
21eleq1d 2829 . 2 (𝑥 = ∅ → (𝑥 ∈ Fin ↔ ∅ ∈ Fin))
3 cnveq 5898 . . 3 (𝑥 = 𝑦𝑥 = 𝑦)
43eleq1d 2829 . 2 (𝑥 = 𝑦 → (𝑥 ∈ Fin ↔ 𝑦 ∈ Fin))
5 cnveq 5898 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → 𝑥 = (𝑦 ∪ {𝑧}))
65eleq1d 2829 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥 ∈ Fin ↔ (𝑦 ∪ {𝑧}) ∈ Fin))
7 cnveq 5898 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
87eleq1d 2829 . 2 (𝑥 = 𝐴 → (𝑥 ∈ Fin ↔ 𝐴 ∈ Fin))
9 cnv0 6172 . . 3 ∅ = ∅
10 0fi 9108 . . 3 ∅ ∈ Fin
119, 10eqeltri 2840 . 2 ∅ ∈ Fin
12 cnvun 6174 . . . 4 (𝑦 ∪ {𝑧}) = (𝑦{𝑧})
13 elvv 5774 . . . . . . 7 (𝑧 ∈ (V × V) ↔ ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
14 sneq 4658 . . . . . . . . . 10 (𝑧 = ⟨𝑢, 𝑣⟩ → {𝑧} = {⟨𝑢, 𝑣⟩})
15 cnveq 5898 . . . . . . . . . . 11 ({𝑧} = {⟨𝑢, 𝑣⟩} → {𝑧} = {⟨𝑢, 𝑣⟩})
16 vex 3492 . . . . . . . . . . . 12 𝑢 ∈ V
17 vex 3492 . . . . . . . . . . . 12 𝑣 ∈ V
1816, 17cnvsn 6257 . . . . . . . . . . 11 {⟨𝑢, 𝑣⟩} = {⟨𝑣, 𝑢⟩}
1915, 18eqtrdi 2796 . . . . . . . . . 10 ({𝑧} = {⟨𝑢, 𝑣⟩} → {𝑧} = {⟨𝑣, 𝑢⟩})
2014, 19syl 17 . . . . . . . . 9 (𝑧 = ⟨𝑢, 𝑣⟩ → {𝑧} = {⟨𝑣, 𝑢⟩})
21 snfi 9109 . . . . . . . . 9 {⟨𝑣, 𝑢⟩} ∈ Fin
2220, 21eqeltrdi 2852 . . . . . . . 8 (𝑧 = ⟨𝑢, 𝑣⟩ → {𝑧} ∈ Fin)
2322exlimivv 1931 . . . . . . 7 (∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩ → {𝑧} ∈ Fin)
2413, 23sylbi 217 . . . . . 6 (𝑧 ∈ (V × V) → {𝑧} ∈ Fin)
25 dfdm4 5920 . . . . . . . . 9 dom {𝑧} = ran {𝑧}
26 dmsnn0 6238 . . . . . . . . . . 11 (𝑧 ∈ (V × V) ↔ dom {𝑧} ≠ ∅)
2726biimpri 228 . . . . . . . . . 10 (dom {𝑧} ≠ ∅ → 𝑧 ∈ (V × V))
2827necon1bi 2975 . . . . . . . . 9 𝑧 ∈ (V × V) → dom {𝑧} = ∅)
2925, 28eqtr3id 2794 . . . . . . . 8 𝑧 ∈ (V × V) → ran {𝑧} = ∅)
30 relcnv 6134 . . . . . . . . 9 Rel {𝑧}
31 relrn0 5995 . . . . . . . . 9 (Rel {𝑧} → ({𝑧} = ∅ ↔ ran {𝑧} = ∅))
3230, 31ax-mp 5 . . . . . . . 8 ({𝑧} = ∅ ↔ ran {𝑧} = ∅)
3329, 32sylibr 234 . . . . . . 7 𝑧 ∈ (V × V) → {𝑧} = ∅)
3433, 10eqeltrdi 2852 . . . . . 6 𝑧 ∈ (V × V) → {𝑧} ∈ Fin)
3524, 34pm2.61i 182 . . . . 5 {𝑧} ∈ Fin
36 unfi 9238 . . . . 5 ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝑦{𝑧}) ∈ Fin)
3735, 36mpan2 690 . . . 4 (𝑦 ∈ Fin → (𝑦{𝑧}) ∈ Fin)
3812, 37eqeltrid 2848 . . 3 (𝑦 ∈ Fin → (𝑦 ∪ {𝑧}) ∈ Fin)
3938a1i 11 . 2 (𝑦 ∈ Fin → (𝑦 ∈ Fin → (𝑦 ∪ {𝑧}) ∈ Fin))
402, 4, 6, 8, 11, 39findcard2 9230 1 (𝐴 ∈ Fin → 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1537  wex 1777  wcel 2108  wne 2946  Vcvv 3488  cun 3974  c0 4352  {csn 4648  cop 4654   × cxp 5698  ccnv 5699  dom cdm 5700  ran crn 5701  Rel wrel 5705  Fincfn 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-en 9004  df-fin 9007
This theorem is referenced by:  f1oenfirn  9246  f1domfi  9247  sbthfilem  9264  fodomfir  9396  rnfi  9408  fsumcnv  15821  fprodcnv  16031  gsumcom3  20020  gsummpt2co  33031  gsumhashmul  33040
  Copyright terms: Public domain W3C validator