MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvfi Structured version   Visualization version   GIF version

Theorem cnvfi 8963
Description: If a set is finite, its converse is as well. (Contributed by Mario Carneiro, 28-Dec-2014.) Avoid ax-pow 5288. (Revised by BTernaryTau, 9-Sep-2024.)
Assertion
Ref Expression
cnvfi (𝐴 ∈ Fin → 𝐴 ∈ Fin)

Proof of Theorem cnvfi
Dummy variables 𝑥 𝑦 𝑧 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnveq 5782 . . 3 (𝑥 = ∅ → 𝑥 = ∅)
21eleq1d 2823 . 2 (𝑥 = ∅ → (𝑥 ∈ Fin ↔ ∅ ∈ Fin))
3 cnveq 5782 . . 3 (𝑥 = 𝑦𝑥 = 𝑦)
43eleq1d 2823 . 2 (𝑥 = 𝑦 → (𝑥 ∈ Fin ↔ 𝑦 ∈ Fin))
5 cnveq 5782 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → 𝑥 = (𝑦 ∪ {𝑧}))
65eleq1d 2823 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → (𝑥 ∈ Fin ↔ (𝑦 ∪ {𝑧}) ∈ Fin))
7 cnveq 5782 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
87eleq1d 2823 . 2 (𝑥 = 𝐴 → (𝑥 ∈ Fin ↔ 𝐴 ∈ Fin))
9 cnv0 6044 . . 3 ∅ = ∅
10 0fin 8954 . . 3 ∅ ∈ Fin
119, 10eqeltri 2835 . 2 ∅ ∈ Fin
12 cnvun 6046 . . . 4 (𝑦 ∪ {𝑧}) = (𝑦{𝑧})
13 elvv 5661 . . . . . . 7 (𝑧 ∈ (V × V) ↔ ∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩)
14 sneq 4571 . . . . . . . . . 10 (𝑧 = ⟨𝑢, 𝑣⟩ → {𝑧} = {⟨𝑢, 𝑣⟩})
15 cnveq 5782 . . . . . . . . . . 11 ({𝑧} = {⟨𝑢, 𝑣⟩} → {𝑧} = {⟨𝑢, 𝑣⟩})
16 vex 3436 . . . . . . . . . . . 12 𝑢 ∈ V
17 vex 3436 . . . . . . . . . . . 12 𝑣 ∈ V
1816, 17cnvsn 6129 . . . . . . . . . . 11 {⟨𝑢, 𝑣⟩} = {⟨𝑣, 𝑢⟩}
1915, 18eqtrdi 2794 . . . . . . . . . 10 ({𝑧} = {⟨𝑢, 𝑣⟩} → {𝑧} = {⟨𝑣, 𝑢⟩})
2014, 19syl 17 . . . . . . . . 9 (𝑧 = ⟨𝑢, 𝑣⟩ → {𝑧} = {⟨𝑣, 𝑢⟩})
21 snfi 8834 . . . . . . . . 9 {⟨𝑣, 𝑢⟩} ∈ Fin
2220, 21eqeltrdi 2847 . . . . . . . 8 (𝑧 = ⟨𝑢, 𝑣⟩ → {𝑧} ∈ Fin)
2322exlimivv 1935 . . . . . . 7 (∃𝑢𝑣 𝑧 = ⟨𝑢, 𝑣⟩ → {𝑧} ∈ Fin)
2413, 23sylbi 216 . . . . . 6 (𝑧 ∈ (V × V) → {𝑧} ∈ Fin)
25 dfdm4 5804 . . . . . . . . 9 dom {𝑧} = ran {𝑧}
26 dmsnn0 6110 . . . . . . . . . . 11 (𝑧 ∈ (V × V) ↔ dom {𝑧} ≠ ∅)
2726biimpri 227 . . . . . . . . . 10 (dom {𝑧} ≠ ∅ → 𝑧 ∈ (V × V))
2827necon1bi 2972 . . . . . . . . 9 𝑧 ∈ (V × V) → dom {𝑧} = ∅)
2925, 28eqtr3id 2792 . . . . . . . 8 𝑧 ∈ (V × V) → ran {𝑧} = ∅)
30 relcnv 6012 . . . . . . . . 9 Rel {𝑧}
31 relrn0 5878 . . . . . . . . 9 (Rel {𝑧} → ({𝑧} = ∅ ↔ ran {𝑧} = ∅))
3230, 31ax-mp 5 . . . . . . . 8 ({𝑧} = ∅ ↔ ran {𝑧} = ∅)
3329, 32sylibr 233 . . . . . . 7 𝑧 ∈ (V × V) → {𝑧} = ∅)
3433, 10eqeltrdi 2847 . . . . . 6 𝑧 ∈ (V × V) → {𝑧} ∈ Fin)
3524, 34pm2.61i 182 . . . . 5 {𝑧} ∈ Fin
36 unfi 8955 . . . . 5 ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝑦{𝑧}) ∈ Fin)
3735, 36mpan2 688 . . . 4 (𝑦 ∈ Fin → (𝑦{𝑧}) ∈ Fin)
3812, 37eqeltrid 2843 . . 3 (𝑦 ∈ Fin → (𝑦 ∪ {𝑧}) ∈ Fin)
3938a1i 11 . 2 (𝑦 ∈ Fin → (𝑦 ∈ Fin → (𝑦 ∪ {𝑧}) ∈ Fin))
402, 4, 6, 8, 11, 39findcard2 8947 1 (𝐴 ∈ Fin → 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1539  wex 1782  wcel 2106  wne 2943  Vcvv 3432  cun 3885  c0 4256  {csn 4561  cop 4567   × cxp 5587  ccnv 5588  dom cdm 5589  ran crn 5590  Rel wrel 5594  Fincfn 8733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-en 8734  df-fin 8737
This theorem is referenced by:  f1oenfirn  8966  f1domfi  8967  sbthfilem  8984  rnfi  9102  fsumcnv  15485  fprodcnv  15693  gsumcom3  19579  gsummpt2co  31308  gsumhashmul  31316
  Copyright terms: Public domain W3C validator