Step | Hyp | Ref
| Expression |
1 | | cnveq 5771 |
. . 3
⊢ (𝑥 = ∅ → ◡𝑥 = ◡∅) |
2 | 1 | eleq1d 2823 |
. 2
⊢ (𝑥 = ∅ → (◡𝑥 ∈ Fin ↔ ◡∅ ∈ Fin)) |
3 | | cnveq 5771 |
. . 3
⊢ (𝑥 = 𝑦 → ◡𝑥 = ◡𝑦) |
4 | 3 | eleq1d 2823 |
. 2
⊢ (𝑥 = 𝑦 → (◡𝑥 ∈ Fin ↔ ◡𝑦 ∈ Fin)) |
5 | | cnveq 5771 |
. . 3
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ◡𝑥 = ◡(𝑦 ∪ {𝑧})) |
6 | 5 | eleq1d 2823 |
. 2
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (◡𝑥 ∈ Fin ↔ ◡(𝑦 ∪ {𝑧}) ∈ Fin)) |
7 | | cnveq 5771 |
. . 3
⊢ (𝑥 = 𝐴 → ◡𝑥 = ◡𝐴) |
8 | 7 | eleq1d 2823 |
. 2
⊢ (𝑥 = 𝐴 → (◡𝑥 ∈ Fin ↔ ◡𝐴 ∈ Fin)) |
9 | | cnv0 6033 |
. . 3
⊢ ◡∅ = ∅ |
10 | | 0fin 8916 |
. . 3
⊢ ∅
∈ Fin |
11 | 9, 10 | eqeltri 2835 |
. 2
⊢ ◡∅ ∈ Fin |
12 | | cnvun 6035 |
. . . 4
⊢ ◡(𝑦 ∪ {𝑧}) = (◡𝑦 ∪ ◡{𝑧}) |
13 | | elvv 5652 |
. . . . . . 7
⊢ (𝑧 ∈ (V × V) ↔
∃𝑢∃𝑣 𝑧 = 〈𝑢, 𝑣〉) |
14 | | sneq 4568 |
. . . . . . . . . 10
⊢ (𝑧 = 〈𝑢, 𝑣〉 → {𝑧} = {〈𝑢, 𝑣〉}) |
15 | | cnveq 5771 |
. . . . . . . . . . 11
⊢ ({𝑧} = {〈𝑢, 𝑣〉} → ◡{𝑧} = ◡{〈𝑢, 𝑣〉}) |
16 | | vex 3426 |
. . . . . . . . . . . 12
⊢ 𝑢 ∈ V |
17 | | vex 3426 |
. . . . . . . . . . . 12
⊢ 𝑣 ∈ V |
18 | 16, 17 | cnvsn 6118 |
. . . . . . . . . . 11
⊢ ◡{〈𝑢, 𝑣〉} = {〈𝑣, 𝑢〉} |
19 | 15, 18 | eqtrdi 2795 |
. . . . . . . . . 10
⊢ ({𝑧} = {〈𝑢, 𝑣〉} → ◡{𝑧} = {〈𝑣, 𝑢〉}) |
20 | 14, 19 | syl 17 |
. . . . . . . . 9
⊢ (𝑧 = 〈𝑢, 𝑣〉 → ◡{𝑧} = {〈𝑣, 𝑢〉}) |
21 | | snfi 8788 |
. . . . . . . . 9
⊢
{〈𝑣, 𝑢〉} ∈
Fin |
22 | 20, 21 | eqeltrdi 2847 |
. . . . . . . 8
⊢ (𝑧 = 〈𝑢, 𝑣〉 → ◡{𝑧} ∈ Fin) |
23 | 22 | exlimivv 1936 |
. . . . . . 7
⊢
(∃𝑢∃𝑣 𝑧 = 〈𝑢, 𝑣〉 → ◡{𝑧} ∈ Fin) |
24 | 13, 23 | sylbi 216 |
. . . . . 6
⊢ (𝑧 ∈ (V × V) →
◡{𝑧} ∈ Fin) |
25 | | dfdm4 5793 |
. . . . . . . . 9
⊢ dom
{𝑧} = ran ◡{𝑧} |
26 | | dmsnn0 6099 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ (V × V) ↔ dom
{𝑧} ≠
∅) |
27 | 26 | biimpri 227 |
. . . . . . . . . 10
⊢ (dom
{𝑧} ≠ ∅ →
𝑧 ∈ (V ×
V)) |
28 | 27 | necon1bi 2971 |
. . . . . . . . 9
⊢ (¬
𝑧 ∈ (V × V)
→ dom {𝑧} =
∅) |
29 | 25, 28 | eqtr3id 2793 |
. . . . . . . 8
⊢ (¬
𝑧 ∈ (V × V)
→ ran ◡{𝑧} = ∅) |
30 | | relcnv 6001 |
. . . . . . . . 9
⊢ Rel ◡{𝑧} |
31 | | relrn0 5867 |
. . . . . . . . 9
⊢ (Rel
◡{𝑧} → (◡{𝑧} = ∅ ↔ ran ◡{𝑧} = ∅)) |
32 | 30, 31 | ax-mp 5 |
. . . . . . . 8
⊢ (◡{𝑧} = ∅ ↔ ran ◡{𝑧} = ∅) |
33 | 29, 32 | sylibr 233 |
. . . . . . 7
⊢ (¬
𝑧 ∈ (V × V)
→ ◡{𝑧} = ∅) |
34 | 33, 10 | eqeltrdi 2847 |
. . . . . 6
⊢ (¬
𝑧 ∈ (V × V)
→ ◡{𝑧} ∈ Fin) |
35 | 24, 34 | pm2.61i 182 |
. . . . 5
⊢ ◡{𝑧} ∈ Fin |
36 | | unfi 8917 |
. . . . 5
⊢ ((◡𝑦 ∈ Fin ∧ ◡{𝑧} ∈ Fin) → (◡𝑦 ∪ ◡{𝑧}) ∈ Fin) |
37 | 35, 36 | mpan2 687 |
. . . 4
⊢ (◡𝑦 ∈ Fin → (◡𝑦 ∪ ◡{𝑧}) ∈ Fin) |
38 | 12, 37 | eqeltrid 2843 |
. . 3
⊢ (◡𝑦 ∈ Fin → ◡(𝑦 ∪ {𝑧}) ∈ Fin) |
39 | 38 | a1i 11 |
. 2
⊢ (𝑦 ∈ Fin → (◡𝑦 ∈ Fin → ◡(𝑦 ∪ {𝑧}) ∈ Fin)) |
40 | 2, 4, 6, 8, 11, 39 | findcard2 8909 |
1
⊢ (𝐴 ∈ Fin → ◡𝐴 ∈ Fin) |