Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvfi | Structured version Visualization version GIF version |
Description: If a set is finite, its converse is as well. (Contributed by Mario Carneiro, 28-Dec-2014.) |
Ref | Expression |
---|---|
cnvfi | ⊢ (𝐴 ∈ Fin → ◡𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnvss 6027 | . . 3 ⊢ ◡◡𝐴 ⊆ 𝐴 | |
2 | ssfi 8747 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ ◡◡𝐴 ⊆ 𝐴) → ◡◡𝐴 ∈ Fin) | |
3 | 1, 2 | mpan2 690 | . 2 ⊢ (𝐴 ∈ Fin → ◡◡𝐴 ∈ Fin) |
4 | relcnv 5943 | . . 3 ⊢ Rel ◡𝐴 | |
5 | cnvexg 7639 | . . 3 ⊢ (𝐴 ∈ Fin → ◡𝐴 ∈ V) | |
6 | cnven 8609 | . . 3 ⊢ ((Rel ◡𝐴 ∧ ◡𝐴 ∈ V) → ◡𝐴 ≈ ◡◡𝐴) | |
7 | 4, 5, 6 | sylancr 590 | . 2 ⊢ (𝐴 ∈ Fin → ◡𝐴 ≈ ◡◡𝐴) |
8 | enfii 8778 | . 2 ⊢ ((◡◡𝐴 ∈ Fin ∧ ◡𝐴 ≈ ◡◡𝐴) → ◡𝐴 ∈ Fin) | |
9 | 3, 7, 8 | syl2anc 587 | 1 ⊢ (𝐴 ∈ Fin → ◡𝐴 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3409 ⊆ wss 3860 class class class wbr 5035 ◡ccnv 5526 Rel wrel 5532 ≈ cen 8529 Fincfn 8532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-om 7585 df-1st 7698 df-2nd 7699 df-1o 8117 df-er 8304 df-en 8533 df-fin 8536 |
This theorem is referenced by: rnfi 8845 fsumcnv 15181 fprodcnv 15390 gsumcom3 19171 gsummpt2co 30838 gsumhashmul 30846 |
Copyright terms: Public domain | W3C validator |