![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cossssid4 | Structured version Visualization version GIF version |
Description: Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 31-Aug-2021.) |
Ref | Expression |
---|---|
cossssid4 | ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑢∃*𝑥 𝑢𝑅𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cossssid3 38451 | . 2 ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑢∀𝑥∀𝑦((𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦)) | |
2 | breq2 5152 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑢𝑅𝑥 ↔ 𝑢𝑅𝑦)) | |
3 | 2 | mo4 2564 | . . 3 ⊢ (∃*𝑥 𝑢𝑅𝑥 ↔ ∀𝑥∀𝑦((𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦)) |
4 | 3 | albii 1816 | . 2 ⊢ (∀𝑢∃*𝑥 𝑢𝑅𝑥 ↔ ∀𝑢∀𝑥∀𝑦((𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦)) |
5 | 1, 4 | bitr4i 278 | 1 ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑢∃*𝑥 𝑢𝑅𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 ∃*wmo 2536 ⊆ wss 3963 class class class wbr 5148 I cid 5582 ≀ ccoss 38162 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-coss 38393 |
This theorem is referenced by: cossssid5 38453 cosscnvssid4 38459 cosselcnvrefrels4 38522 dffunALTV4 38672 |
Copyright terms: Public domain | W3C validator |