| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cossssid4 | Structured version Visualization version GIF version | ||
| Description: Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 31-Aug-2021.) |
| Ref | Expression |
|---|---|
| cossssid4 | ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑢∃*𝑥 𝑢𝑅𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cossssid3 38492 | . 2 ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑢∀𝑥∀𝑦((𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦)) | |
| 2 | breq2 5128 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑢𝑅𝑥 ↔ 𝑢𝑅𝑦)) | |
| 3 | 2 | mo4 2566 | . . 3 ⊢ (∃*𝑥 𝑢𝑅𝑥 ↔ ∀𝑥∀𝑦((𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦)) |
| 4 | 3 | albii 1819 | . 2 ⊢ (∀𝑢∃*𝑥 𝑢𝑅𝑥 ↔ ∀𝑢∀𝑥∀𝑦((𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦)) |
| 5 | 1, 4 | bitr4i 278 | 1 ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑢∃*𝑥 𝑢𝑅𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃*wmo 2538 ⊆ wss 3931 class class class wbr 5124 I cid 5552 ≀ ccoss 38204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-coss 38434 |
| This theorem is referenced by: cossssid5 38494 cosscnvssid4 38500 cosselcnvrefrels4 38563 dffunALTV4 38713 |
| Copyright terms: Public domain | W3C validator |