Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cossssid4 Structured version   Visualization version   GIF version

Theorem cossssid4 38468
Description: Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 31-Aug-2021.)
Assertion
Ref Expression
cossssid4 ( ≀ 𝑅 ⊆ I ↔ ∀𝑢∃*𝑥 𝑢𝑅𝑥)
Distinct variable group:   𝑢,𝑅,𝑥

Proof of Theorem cossssid4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cossssid3 38467 . 2 ( ≀ 𝑅 ⊆ I ↔ ∀𝑢𝑥𝑦((𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦))
2 breq2 5114 . . . 4 (𝑥 = 𝑦 → (𝑢𝑅𝑥𝑢𝑅𝑦))
32mo4 2560 . . 3 (∃*𝑥 𝑢𝑅𝑥 ↔ ∀𝑥𝑦((𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦))
43albii 1819 . 2 (∀𝑢∃*𝑥 𝑢𝑅𝑥 ↔ ∀𝑢𝑥𝑦((𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦))
51, 4bitr4i 278 1 ( ≀ 𝑅 ⊆ I ↔ ∀𝑢∃*𝑥 𝑢𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  ∃*wmo 2532  wss 3917   class class class wbr 5110   I cid 5535  ccoss 38176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-coss 38409
This theorem is referenced by:  cossssid5  38469  cosscnvssid4  38475  cosselcnvrefrels4  38538  dffunALTV4  38689
  Copyright terms: Public domain W3C validator