Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cossssid4 Structured version   Visualization version   GIF version

Theorem cossssid4 38426
Description: Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 31-Aug-2021.)
Assertion
Ref Expression
cossssid4 ( ≀ 𝑅 ⊆ I ↔ ∀𝑢∃*𝑥 𝑢𝑅𝑥)
Distinct variable group:   𝑢,𝑅,𝑥

Proof of Theorem cossssid4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cossssid3 38425 . 2 ( ≀ 𝑅 ⊆ I ↔ ∀𝑢𝑥𝑦((𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦))
2 breq2 5170 . . . 4 (𝑥 = 𝑦 → (𝑢𝑅𝑥𝑢𝑅𝑦))
32mo4 2569 . . 3 (∃*𝑥 𝑢𝑅𝑥 ↔ ∀𝑥𝑦((𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦))
43albii 1817 . 2 (∀𝑢∃*𝑥 𝑢𝑅𝑥 ↔ ∀𝑢𝑥𝑦((𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦))
51, 4bitr4i 278 1 ( ≀ 𝑅 ⊆ I ↔ ∀𝑢∃*𝑥 𝑢𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535  ∃*wmo 2541  wss 3976   class class class wbr 5166   I cid 5592  ccoss 38135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-coss 38367
This theorem is referenced by:  cossssid5  38427  cosscnvssid4  38433  cosselcnvrefrels4  38496  dffunALTV4  38646
  Copyright terms: Public domain W3C validator