Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cosscnvssid4 Structured version   Visualization version   GIF version

Theorem cosscnvssid4 38004
Description: Equivalent expressions for the class of cosets by the converse of 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 31-Aug-2021.)
Assertion
Ref Expression
cosscnvssid4 ( ≀ 𝑅 ⊆ I ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥)
Distinct variable group:   𝑢,𝑅,𝑥

Proof of Theorem cosscnvssid4
StepHypRef Expression
1 cossssid4 37997 . 2 ( ≀ 𝑅 ⊆ I ↔ ∀𝑥∃*𝑢 𝑥𝑅𝑢)
2 brcnvg 5876 . . . . 5 ((𝑥 ∈ V ∧ 𝑢 ∈ V) → (𝑥𝑅𝑢𝑢𝑅𝑥))
32el2v 3471 . . . 4 (𝑥𝑅𝑢𝑢𝑅𝑥)
43mobii 2536 . . 3 (∃*𝑢 𝑥𝑅𝑢 ↔ ∃*𝑢 𝑢𝑅𝑥)
54albii 1813 . 2 (∀𝑥∃*𝑢 𝑥𝑅𝑢 ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥)
61, 5bitri 274 1 ( ≀ 𝑅 ⊆ I ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1531  ∃*wmo 2526  Vcvv 3463  wss 3940   class class class wbr 5143   I cid 5569  ccnv 5671  ccoss 37704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3052  df-rab 3420  df-v 3465  df-dif 3943  df-un 3945  df-ss 3957  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5144  df-opab 5206  df-id 5570  df-cnv 5680  df-coss 37938
This theorem is referenced by:  cosscnvssid5  38005  dfdisjs4  38238  dfdisjALTV4  38243  eldisjs4  38252
  Copyright terms: Public domain W3C validator