| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cosscnvssid4 | Structured version Visualization version GIF version | ||
| Description: Equivalent expressions for the class of cosets by the converse of 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 31-Aug-2021.) |
| Ref | Expression |
|---|---|
| cosscnvssid4 | ⊢ ( ≀ ◡𝑅 ⊆ I ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cossssid4 38571 | . 2 ⊢ ( ≀ ◡𝑅 ⊆ I ↔ ∀𝑥∃*𝑢 𝑥◡𝑅𝑢) | |
| 2 | brcnvg 5818 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝑢 ∈ V) → (𝑥◡𝑅𝑢 ↔ 𝑢𝑅𝑥)) | |
| 3 | 2 | el2v 3443 | . . . 4 ⊢ (𝑥◡𝑅𝑢 ↔ 𝑢𝑅𝑥) |
| 4 | 3 | mobii 2543 | . . 3 ⊢ (∃*𝑢 𝑥◡𝑅𝑢 ↔ ∃*𝑢 𝑢𝑅𝑥) |
| 5 | 4 | albii 1820 | . 2 ⊢ (∀𝑥∃*𝑢 𝑥◡𝑅𝑢 ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥) |
| 6 | 1, 5 | bitri 275 | 1 ⊢ ( ≀ ◡𝑅 ⊆ I ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1539 ∃*wmo 2533 Vcvv 3436 ⊆ wss 3897 class class class wbr 5089 I cid 5508 ◡ccnv 5613 ≀ ccoss 38221 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-id 5509 df-cnv 5622 df-coss 38512 |
| This theorem is referenced by: cosscnvssid5 38579 dfdisjs4 38808 dfdisjALTV4 38813 eldisjs4 38822 |
| Copyright terms: Public domain | W3C validator |