Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cosscnvssid4 Structured version   Visualization version   GIF version

Theorem cosscnvssid4 38500
Description: Equivalent expressions for the class of cosets by the converse of 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 31-Aug-2021.)
Assertion
Ref Expression
cosscnvssid4 ( ≀ 𝑅 ⊆ I ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥)
Distinct variable group:   𝑢,𝑅,𝑥

Proof of Theorem cosscnvssid4
StepHypRef Expression
1 cossssid4 38493 . 2 ( ≀ 𝑅 ⊆ I ↔ ∀𝑥∃*𝑢 𝑥𝑅𝑢)
2 brcnvg 5864 . . . . 5 ((𝑥 ∈ V ∧ 𝑢 ∈ V) → (𝑥𝑅𝑢𝑢𝑅𝑥))
32el2v 3471 . . . 4 (𝑥𝑅𝑢𝑢𝑅𝑥)
43mobii 2548 . . 3 (∃*𝑢 𝑥𝑅𝑢 ↔ ∃*𝑢 𝑢𝑅𝑥)
54albii 1819 . 2 (∀𝑥∃*𝑢 𝑥𝑅𝑢 ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥)
61, 5bitri 275 1 ( ≀ 𝑅 ⊆ I ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1538  ∃*wmo 2538  Vcvv 3464  wss 3931   class class class wbr 5124   I cid 5552  ccnv 5658  ccoss 38204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-id 5553  df-cnv 5667  df-coss 38434
This theorem is referenced by:  cosscnvssid5  38501  dfdisjs4  38734  dfdisjALTV4  38739  eldisjs4  38748
  Copyright terms: Public domain W3C validator