Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffunALTV4 Structured version   Visualization version   GIF version

Theorem dffunALTV4 38672
Description: Alternate definition of the function relation predicate, cf. dfdisjALTV4 38698. This is dffun6 6576. For the 𝑋 axis and the 𝑌 axis you can convert the right side to (∀𝑥1∃*𝑦1𝑥1𝐹𝑦1 ∧ Rel 𝐹). (Contributed by NM, 9-Mar-1995.)
Assertion
Ref Expression
dffunALTV4 ( FunALTV 𝐹 ↔ (∀𝑢∃*𝑥 𝑢𝐹𝑥 ∧ Rel 𝐹))
Distinct variable group:   𝑢,𝐹,𝑥

Proof of Theorem dffunALTV4
StepHypRef Expression
1 dffunALTV2 38670 . 2 ( FunALTV 𝐹 ↔ ( ≀ 𝐹 ⊆ I ∧ Rel 𝐹))
2 cossssid4 38452 . . 3 ( ≀ 𝐹 ⊆ I ↔ ∀𝑢∃*𝑥 𝑢𝐹𝑥)
32anbi1i 624 . 2 (( ≀ 𝐹 ⊆ I ∧ Rel 𝐹) ↔ (∀𝑢∃*𝑥 𝑢𝐹𝑥 ∧ Rel 𝐹))
41, 3bitri 275 1 ( FunALTV 𝐹 ↔ (∀𝑢∃*𝑥 𝑢𝐹𝑥 ∧ Rel 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wal 1535  ∃*wmo 2536  wss 3963   class class class wbr 5148   I cid 5582  Rel wrel 5694  ccoss 38162   FunALTV wfunALTV 38193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-coss 38393  df-cnvrefrel 38509  df-funALTV 38664
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator