Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffunALTV4 Structured version   Visualization version   GIF version

Theorem dffunALTV4 38713
Description: Alternate definition of the function relation predicate, cf. dfdisjALTV4 38739. This is dffun6 6549. For the 𝑋 axis and the 𝑌 axis you can convert the right side to (∀𝑥1∃*𝑦1𝑥1𝐹𝑦1 ∧ Rel 𝐹). (Contributed by NM, 9-Mar-1995.)
Assertion
Ref Expression
dffunALTV4 ( FunALTV 𝐹 ↔ (∀𝑢∃*𝑥 𝑢𝐹𝑥 ∧ Rel 𝐹))
Distinct variable group:   𝑢,𝐹,𝑥

Proof of Theorem dffunALTV4
StepHypRef Expression
1 dffunALTV2 38711 . 2 ( FunALTV 𝐹 ↔ ( ≀ 𝐹 ⊆ I ∧ Rel 𝐹))
2 cossssid4 38493 . . 3 ( ≀ 𝐹 ⊆ I ↔ ∀𝑢∃*𝑥 𝑢𝐹𝑥)
32anbi1i 624 . 2 (( ≀ 𝐹 ⊆ I ∧ Rel 𝐹) ↔ (∀𝑢∃*𝑥 𝑢𝐹𝑥 ∧ Rel 𝐹))
41, 3bitri 275 1 ( FunALTV 𝐹 ↔ (∀𝑢∃*𝑥 𝑢𝐹𝑥 ∧ Rel 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wal 1538  ∃*wmo 2538  wss 3931   class class class wbr 5124   I cid 5552  Rel wrel 5664  ccoss 38204   FunALTV wfunALTV 38235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-coss 38434  df-cnvrefrel 38550  df-funALTV 38705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator