| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dffunALTV4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the function relation predicate, cf. dfdisjALTV4 38701. This is dffun6 6511. For the 𝑋 axis and the 𝑌 axis you can convert the right side to (∀𝑥1∃*𝑦1𝑥1𝐹𝑦1 ∧ Rel 𝐹). (Contributed by NM, 9-Mar-1995.) |
| Ref | Expression |
|---|---|
| dffunALTV4 | ⊢ ( FunALTV 𝐹 ↔ (∀𝑢∃*𝑥 𝑢𝐹𝑥 ∧ Rel 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffunALTV2 38673 | . 2 ⊢ ( FunALTV 𝐹 ↔ ( ≀ 𝐹 ⊆ I ∧ Rel 𝐹)) | |
| 2 | cossssid4 38454 | . . 3 ⊢ ( ≀ 𝐹 ⊆ I ↔ ∀𝑢∃*𝑥 𝑢𝐹𝑥) | |
| 3 | 2 | anbi1i 624 | . 2 ⊢ (( ≀ 𝐹 ⊆ I ∧ Rel 𝐹) ↔ (∀𝑢∃*𝑥 𝑢𝐹𝑥 ∧ Rel 𝐹)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ ( FunALTV 𝐹 ↔ (∀𝑢∃*𝑥 𝑢𝐹𝑥 ∧ Rel 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃*wmo 2531 ⊆ wss 3911 class class class wbr 5102 I cid 5525 Rel wrel 5636 ≀ ccoss 38162 FunALTV wfunALTV 38193 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-coss 38395 df-cnvrefrel 38511 df-funALTV 38667 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |