![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbcog | Structured version Visualization version GIF version |
Description: Distribute proper substitution through a composition of relations. (Contributed by RP, 28-Jun-2020.) |
Ref | Expression |
---|---|
csbcog | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 ∘ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∘ ⦋𝐴 / 𝑥⦌𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3897 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌(𝐵 ∘ 𝐶) = ⦋𝐴 / 𝑥⦌(𝐵 ∘ 𝐶)) | |
2 | csbeq1 3897 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
3 | csbeq1 3897 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌𝐶) | |
4 | 2, 3 | coeq12d 5865 | . . 3 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐵 ∘ ⦋𝑦 / 𝑥⦌𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∘ ⦋𝐴 / 𝑥⦌𝐶)) |
5 | 1, 4 | eqeq12d 2749 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌(𝐵 ∘ 𝐶) = (⦋𝑦 / 𝑥⦌𝐵 ∘ ⦋𝑦 / 𝑥⦌𝐶) ↔ ⦋𝐴 / 𝑥⦌(𝐵 ∘ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∘ ⦋𝐴 / 𝑥⦌𝐶))) |
6 | vex 3479 | . . 3 ⊢ 𝑦 ∈ V | |
7 | nfcsb1v 3919 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
8 | nfcsb1v 3919 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
9 | 7, 8 | nfco 5866 | . . 3 ⊢ Ⅎ𝑥(⦋𝑦 / 𝑥⦌𝐵 ∘ ⦋𝑦 / 𝑥⦌𝐶) |
10 | csbeq1a 3908 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
11 | csbeq1a 3908 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
12 | 10, 11 | coeq12d 5865 | . . 3 ⊢ (𝑥 = 𝑦 → (𝐵 ∘ 𝐶) = (⦋𝑦 / 𝑥⦌𝐵 ∘ ⦋𝑦 / 𝑥⦌𝐶)) |
13 | 6, 9, 12 | csbief 3929 | . 2 ⊢ ⦋𝑦 / 𝑥⦌(𝐵 ∘ 𝐶) = (⦋𝑦 / 𝑥⦌𝐵 ∘ ⦋𝑦 / 𝑥⦌𝐶) |
14 | 5, 13 | vtoclg 3557 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 ∘ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∘ ⦋𝐴 / 𝑥⦌𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ⦋csb 3894 ∘ ccom 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-co 5686 |
This theorem is referenced by: csbwrecsg 8306 brtrclfv2 42478 |
Copyright terms: Public domain | W3C validator |