MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbcog Structured version   Visualization version   GIF version

Theorem csbcog 6301
Description: Distribute proper substitution through a composition of relations. (Contributed by RP, 28-Jun-2020.)
Assertion
Ref Expression
csbcog (𝐴𝑉𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))

Proof of Theorem csbcog
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3895 . . 3 (𝑦 = 𝐴𝑦 / 𝑥(𝐵𝐶) = 𝐴 / 𝑥(𝐵𝐶))
2 csbeq1 3895 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
3 csbeq1 3895 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐶)
42, 3coeq12d 5867 . . 3 (𝑦 = 𝐴 → (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
51, 4eqeq12d 2744 . 2 (𝑦 = 𝐴 → (𝑦 / 𝑥(𝐵𝐶) = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶) ↔ 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)))
6 vex 3475 . . 3 𝑦 ∈ V
7 nfcsb1v 3917 . . . 4 𝑥𝑦 / 𝑥𝐵
8 nfcsb1v 3917 . . . 4 𝑥𝑦 / 𝑥𝐶
97, 8nfco 5868 . . 3 𝑥(𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶)
10 csbeq1a 3906 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
11 csbeq1a 3906 . . . 4 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
1210, 11coeq12d 5867 . . 3 (𝑥 = 𝑦 → (𝐵𝐶) = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶))
136, 9, 12csbief 3927 . 2 𝑦 / 𝑥(𝐵𝐶) = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶)
145, 13vtoclg 3540 1 (𝐴𝑉𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  csb 3892  ccom 5682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5149  df-opab 5211  df-co 5687
This theorem is referenced by:  csbwrecsg  8327  brtrclfv2  43157
  Copyright terms: Public domain W3C validator