| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbcog | Structured version Visualization version GIF version | ||
| Description: Distribute proper substitution through a composition of relations. (Contributed by RP, 28-Jun-2020.) |
| Ref | Expression |
|---|---|
| csbcog | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 ∘ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∘ ⦋𝐴 / 𝑥⦌𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 3867 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌(𝐵 ∘ 𝐶) = ⦋𝐴 / 𝑥⦌(𝐵 ∘ 𝐶)) | |
| 2 | csbeq1 3867 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
| 3 | csbeq1 3867 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌𝐶) | |
| 4 | 2, 3 | coeq12d 5830 | . . 3 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐵 ∘ ⦋𝑦 / 𝑥⦌𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∘ ⦋𝐴 / 𝑥⦌𝐶)) |
| 5 | 1, 4 | eqeq12d 2746 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌(𝐵 ∘ 𝐶) = (⦋𝑦 / 𝑥⦌𝐵 ∘ ⦋𝑦 / 𝑥⦌𝐶) ↔ ⦋𝐴 / 𝑥⦌(𝐵 ∘ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∘ ⦋𝐴 / 𝑥⦌𝐶))) |
| 6 | vex 3454 | . . 3 ⊢ 𝑦 ∈ V | |
| 7 | nfcsb1v 3888 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
| 8 | nfcsb1v 3888 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
| 9 | 7, 8 | nfco 5831 | . . 3 ⊢ Ⅎ𝑥(⦋𝑦 / 𝑥⦌𝐵 ∘ ⦋𝑦 / 𝑥⦌𝐶) |
| 10 | csbeq1a 3878 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
| 11 | csbeq1a 3878 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
| 12 | 10, 11 | coeq12d 5830 | . . 3 ⊢ (𝑥 = 𝑦 → (𝐵 ∘ 𝐶) = (⦋𝑦 / 𝑥⦌𝐵 ∘ ⦋𝑦 / 𝑥⦌𝐶)) |
| 13 | 6, 9, 12 | csbief 3898 | . 2 ⊢ ⦋𝑦 / 𝑥⦌(𝐵 ∘ 𝐶) = (⦋𝑦 / 𝑥⦌𝐵 ∘ ⦋𝑦 / 𝑥⦌𝐶) |
| 14 | 5, 13 | vtoclg 3523 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 ∘ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∘ ⦋𝐴 / 𝑥⦌𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⦋csb 3864 ∘ ccom 5644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 df-opab 5172 df-co 5649 |
| This theorem is referenced by: csbwrecsg 8299 brtrclfv2 43709 |
| Copyright terms: Public domain | W3C validator |