| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbcog | Structured version Visualization version GIF version | ||
| Description: Distribute proper substitution through a composition of relations. (Contributed by RP, 28-Jun-2020.) |
| Ref | Expression |
|---|---|
| csbcog | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 ∘ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∘ ⦋𝐴 / 𝑥⦌𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 3848 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌(𝐵 ∘ 𝐶) = ⦋𝐴 / 𝑥⦌(𝐵 ∘ 𝐶)) | |
| 2 | csbeq1 3848 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
| 3 | csbeq1 3848 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌𝐶) | |
| 4 | 2, 3 | coeq12d 5803 | . . 3 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐵 ∘ ⦋𝑦 / 𝑥⦌𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∘ ⦋𝐴 / 𝑥⦌𝐶)) |
| 5 | 1, 4 | eqeq12d 2747 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌(𝐵 ∘ 𝐶) = (⦋𝑦 / 𝑥⦌𝐵 ∘ ⦋𝑦 / 𝑥⦌𝐶) ↔ ⦋𝐴 / 𝑥⦌(𝐵 ∘ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∘ ⦋𝐴 / 𝑥⦌𝐶))) |
| 6 | vex 3440 | . . 3 ⊢ 𝑦 ∈ V | |
| 7 | nfcsb1v 3869 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
| 8 | nfcsb1v 3869 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
| 9 | 7, 8 | nfco 5804 | . . 3 ⊢ Ⅎ𝑥(⦋𝑦 / 𝑥⦌𝐵 ∘ ⦋𝑦 / 𝑥⦌𝐶) |
| 10 | csbeq1a 3859 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
| 11 | csbeq1a 3859 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
| 12 | 10, 11 | coeq12d 5803 | . . 3 ⊢ (𝑥 = 𝑦 → (𝐵 ∘ 𝐶) = (⦋𝑦 / 𝑥⦌𝐵 ∘ ⦋𝑦 / 𝑥⦌𝐶)) |
| 13 | 6, 9, 12 | csbief 3879 | . 2 ⊢ ⦋𝑦 / 𝑥⦌(𝐵 ∘ 𝐶) = (⦋𝑦 / 𝑥⦌𝐵 ∘ ⦋𝑦 / 𝑥⦌𝐶) |
| 14 | 5, 13 | vtoclg 3507 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 ∘ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∘ ⦋𝐴 / 𝑥⦌𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⦋csb 3845 ∘ ccom 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-co 5623 |
| This theorem is referenced by: csbwrecsg 8248 brtrclfv2 43830 |
| Copyright terms: Public domain | W3C validator |