| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbcog | Structured version Visualization version GIF version | ||
| Description: Distribute proper substitution through a composition of relations. (Contributed by RP, 28-Jun-2020.) |
| Ref | Expression |
|---|---|
| csbcog | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 ∘ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∘ ⦋𝐴 / 𝑥⦌𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 3875 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌(𝐵 ∘ 𝐶) = ⦋𝐴 / 𝑥⦌(𝐵 ∘ 𝐶)) | |
| 2 | csbeq1 3875 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
| 3 | csbeq1 3875 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌𝐶) | |
| 4 | 2, 3 | coeq12d 5841 | . . 3 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐵 ∘ ⦋𝑦 / 𝑥⦌𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∘ ⦋𝐴 / 𝑥⦌𝐶)) |
| 5 | 1, 4 | eqeq12d 2750 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌(𝐵 ∘ 𝐶) = (⦋𝑦 / 𝑥⦌𝐵 ∘ ⦋𝑦 / 𝑥⦌𝐶) ↔ ⦋𝐴 / 𝑥⦌(𝐵 ∘ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∘ ⦋𝐴 / 𝑥⦌𝐶))) |
| 6 | vex 3461 | . . 3 ⊢ 𝑦 ∈ V | |
| 7 | nfcsb1v 3896 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
| 8 | nfcsb1v 3896 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
| 9 | 7, 8 | nfco 5842 | . . 3 ⊢ Ⅎ𝑥(⦋𝑦 / 𝑥⦌𝐵 ∘ ⦋𝑦 / 𝑥⦌𝐶) |
| 10 | csbeq1a 3886 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
| 11 | csbeq1a 3886 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
| 12 | 10, 11 | coeq12d 5841 | . . 3 ⊢ (𝑥 = 𝑦 → (𝐵 ∘ 𝐶) = (⦋𝑦 / 𝑥⦌𝐵 ∘ ⦋𝑦 / 𝑥⦌𝐶)) |
| 13 | 6, 9, 12 | csbief 3906 | . 2 ⊢ ⦋𝑦 / 𝑥⦌(𝐵 ∘ 𝐶) = (⦋𝑦 / 𝑥⦌𝐵 ∘ ⦋𝑦 / 𝑥⦌𝐶) |
| 14 | 5, 13 | vtoclg 3531 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 ∘ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∘ ⦋𝐴 / 𝑥⦌𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ⦋csb 3872 ∘ ccom 5655 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-br 5117 df-opab 5179 df-co 5660 |
| This theorem is referenced by: csbwrecsg 8314 brtrclfv2 43676 |
| Copyright terms: Public domain | W3C validator |