MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbcog Structured version   Visualization version   GIF version

Theorem csbcog 6327
Description: Distribute proper substitution through a composition of relations. (Contributed by RP, 28-Jun-2020.)
Assertion
Ref Expression
csbcog (𝐴𝑉𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))

Proof of Theorem csbcog
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3918 . . 3 (𝑦 = 𝐴𝑦 / 𝑥(𝐵𝐶) = 𝐴 / 𝑥(𝐵𝐶))
2 csbeq1 3918 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
3 csbeq1 3918 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐶)
42, 3coeq12d 5888 . . 3 (𝑦 = 𝐴 → (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
51, 4eqeq12d 2750 . 2 (𝑦 = 𝐴 → (𝑦 / 𝑥(𝐵𝐶) = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶) ↔ 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)))
6 vex 3486 . . 3 𝑦 ∈ V
7 nfcsb1v 3940 . . . 4 𝑥𝑦 / 𝑥𝐵
8 nfcsb1v 3940 . . . 4 𝑥𝑦 / 𝑥𝐶
97, 8nfco 5889 . . 3 𝑥(𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶)
10 csbeq1a 3929 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
11 csbeq1a 3929 . . . 4 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
1210, 11coeq12d 5888 . . 3 (𝑥 = 𝑦 → (𝐵𝐶) = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶))
136, 9, 12csbief 3950 . 2 𝑦 / 𝑥(𝐵𝐶) = (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶)
145, 13vtoclg 3561 1 (𝐴𝑉𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2103  csb 3915  ccom 5703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-ss 3987  df-nul 4348  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5170  df-opab 5232  df-co 5708
This theorem is referenced by:  csbwrecsg  8358  brtrclfv2  43629
  Copyright terms: Public domain W3C validator