Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbcog | Structured version Visualization version GIF version |
Description: Distribute proper substitution through a composition of relations. (Contributed by RP, 28-Jun-2020.) |
Ref | Expression |
---|---|
csbcog | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 ∘ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∘ ⦋𝐴 / 𝑥⦌𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq1 3840 | . . 3 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌(𝐵 ∘ 𝐶) = ⦋𝐴 / 𝑥⦌(𝐵 ∘ 𝐶)) | |
2 | csbeq1 3840 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) | |
3 | csbeq1 3840 | . . . 4 ⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌𝐶) | |
4 | 2, 3 | coeq12d 5786 | . . 3 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌𝐵 ∘ ⦋𝑦 / 𝑥⦌𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∘ ⦋𝐴 / 𝑥⦌𝐶)) |
5 | 1, 4 | eqeq12d 2752 | . 2 ⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌(𝐵 ∘ 𝐶) = (⦋𝑦 / 𝑥⦌𝐵 ∘ ⦋𝑦 / 𝑥⦌𝐶) ↔ ⦋𝐴 / 𝑥⦌(𝐵 ∘ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∘ ⦋𝐴 / 𝑥⦌𝐶))) |
6 | vex 3441 | . . 3 ⊢ 𝑦 ∈ V | |
7 | nfcsb1v 3862 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
8 | nfcsb1v 3862 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 | |
9 | 7, 8 | nfco 5787 | . . 3 ⊢ Ⅎ𝑥(⦋𝑦 / 𝑥⦌𝐵 ∘ ⦋𝑦 / 𝑥⦌𝐶) |
10 | csbeq1a 3851 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
11 | csbeq1a 3851 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) | |
12 | 10, 11 | coeq12d 5786 | . . 3 ⊢ (𝑥 = 𝑦 → (𝐵 ∘ 𝐶) = (⦋𝑦 / 𝑥⦌𝐵 ∘ ⦋𝑦 / 𝑥⦌𝐶)) |
13 | 6, 9, 12 | csbief 3872 | . 2 ⊢ ⦋𝑦 / 𝑥⦌(𝐵 ∘ 𝐶) = (⦋𝑦 / 𝑥⦌𝐵 ∘ ⦋𝑦 / 𝑥⦌𝐶) |
14 | 5, 13 | vtoclg 3510 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 ∘ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∘ ⦋𝐴 / 𝑥⦌𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ⦋csb 3837 ∘ ccom 5604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-co 5609 |
This theorem is referenced by: csbwrecsg 8168 brtrclfv2 41548 |
Copyright terms: Public domain | W3C validator |