MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbwrecsg Structured version   Visualization version   GIF version

Theorem csbwrecsg 8137
Description: Move class substitution in and out of the well-founded recursive function generator. (Contributed by ML, 25-Oct-2020.) (Revised by Scott Fenton, 18-Nov-2024.)
Assertion
Ref Expression
csbwrecsg (𝐴𝑉𝐴 / 𝑥wrecs(𝑅, 𝐷, 𝐹) = wrecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥𝐹))

Proof of Theorem csbwrecsg
StepHypRef Expression
1 csbfrecsg 8100 . . 3 (𝐴𝑉𝐴 / 𝑥frecs(𝑅, 𝐷, (𝐹 ∘ 2nd )) = frecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥(𝐹 ∘ 2nd )))
2 eqid 2738 . . . 4 𝐴 / 𝑥𝑅 = 𝐴 / 𝑥𝑅
3 eqid 2738 . . . 4 𝐴 / 𝑥𝐷 = 𝐴 / 𝑥𝐷
4 csbcog 6200 . . . . 5 (𝐴𝑉𝐴 / 𝑥(𝐹 ∘ 2nd ) = (𝐴 / 𝑥𝐹𝐴 / 𝑥2nd ))
5 csbconstg 3851 . . . . . 6 (𝐴𝑉𝐴 / 𝑥2nd = 2nd )
65coeq2d 5771 . . . . 5 (𝐴𝑉 → (𝐴 / 𝑥𝐹𝐴 / 𝑥2nd ) = (𝐴 / 𝑥𝐹 ∘ 2nd ))
74, 6eqtrd 2778 . . . 4 (𝐴𝑉𝐴 / 𝑥(𝐹 ∘ 2nd ) = (𝐴 / 𝑥𝐹 ∘ 2nd ))
8 frecseq123 8098 . . . 4 ((𝐴 / 𝑥𝑅 = 𝐴 / 𝑥𝑅𝐴 / 𝑥𝐷 = 𝐴 / 𝑥𝐷𝐴 / 𝑥(𝐹 ∘ 2nd ) = (𝐴 / 𝑥𝐹 ∘ 2nd )) → frecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥(𝐹 ∘ 2nd )) = frecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, (𝐴 / 𝑥𝐹 ∘ 2nd )))
92, 3, 7, 8mp3an12i 1464 . . 3 (𝐴𝑉 → frecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥(𝐹 ∘ 2nd )) = frecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, (𝐴 / 𝑥𝐹 ∘ 2nd )))
101, 9eqtrd 2778 . 2 (𝐴𝑉𝐴 / 𝑥frecs(𝑅, 𝐷, (𝐹 ∘ 2nd )) = frecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, (𝐴 / 𝑥𝐹 ∘ 2nd )))
11 df-wrecs 8128 . . 3 wrecs(𝑅, 𝐷, 𝐹) = frecs(𝑅, 𝐷, (𝐹 ∘ 2nd ))
1211csbeq2i 3840 . 2 𝐴 / 𝑥wrecs(𝑅, 𝐷, 𝐹) = 𝐴 / 𝑥frecs(𝑅, 𝐷, (𝐹 ∘ 2nd ))
13 df-wrecs 8128 . 2 wrecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥𝐹) = frecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, (𝐴 / 𝑥𝐹 ∘ 2nd ))
1410, 12, 133eqtr4g 2803 1 (𝐴𝑉𝐴 / 𝑥wrecs(𝑅, 𝐷, 𝐹) = wrecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  csb 3832  ccom 5593  2nd c2nd 7830  frecscfrecs 8096  wrecscwrecs 8127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-iota 6391  df-fv 6441  df-ov 7278  df-frecs 8097  df-wrecs 8128
This theorem is referenced by:  csbrecsg  35499
  Copyright terms: Public domain W3C validator