![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbwrecsg | Structured version Visualization version GIF version |
Description: Move class substitution in and out of the well-founded recursive function generator. (Contributed by ML, 25-Oct-2020.) (Revised by Scott Fenton, 18-Nov-2024.) |
Ref | Expression |
---|---|
csbwrecsg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌wrecs(𝑅, 𝐷, 𝐹) = wrecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbfrecsg 8216 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌frecs(𝑅, 𝐷, (𝐹 ∘ 2nd )) = frecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌(𝐹 ∘ 2nd ))) | |
2 | eqid 2733 | . . . 4 ⊢ ⦋𝐴 / 𝑥⦌𝑅 = ⦋𝐴 / 𝑥⦌𝑅 | |
3 | eqid 2733 | . . . 4 ⊢ ⦋𝐴 / 𝑥⦌𝐷 = ⦋𝐴 / 𝑥⦌𝐷 | |
4 | csbcog 6250 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐹 ∘ 2nd ) = (⦋𝐴 / 𝑥⦌𝐹 ∘ ⦋𝐴 / 𝑥⦌2nd )) | |
5 | csbconstg 3875 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌2nd = 2nd ) | |
6 | 5 | coeq2d 5819 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝐹 ∘ ⦋𝐴 / 𝑥⦌2nd ) = (⦋𝐴 / 𝑥⦌𝐹 ∘ 2nd )) |
7 | 4, 6 | eqtrd 2773 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐹 ∘ 2nd ) = (⦋𝐴 / 𝑥⦌𝐹 ∘ 2nd )) |
8 | frecseq123 8214 | . . . 4 ⊢ ((⦋𝐴 / 𝑥⦌𝑅 = ⦋𝐴 / 𝑥⦌𝑅 ∧ ⦋𝐴 / 𝑥⦌𝐷 = ⦋𝐴 / 𝑥⦌𝐷 ∧ ⦋𝐴 / 𝑥⦌(𝐹 ∘ 2nd ) = (⦋𝐴 / 𝑥⦌𝐹 ∘ 2nd )) → frecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌(𝐹 ∘ 2nd )) = frecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, (⦋𝐴 / 𝑥⦌𝐹 ∘ 2nd ))) | |
9 | 2, 3, 7, 8 | mp3an12i 1466 | . . 3 ⊢ (𝐴 ∈ 𝑉 → frecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌(𝐹 ∘ 2nd )) = frecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, (⦋𝐴 / 𝑥⦌𝐹 ∘ 2nd ))) |
10 | 1, 9 | eqtrd 2773 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌frecs(𝑅, 𝐷, (𝐹 ∘ 2nd )) = frecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, (⦋𝐴 / 𝑥⦌𝐹 ∘ 2nd ))) |
11 | df-wrecs 8244 | . . 3 ⊢ wrecs(𝑅, 𝐷, 𝐹) = frecs(𝑅, 𝐷, (𝐹 ∘ 2nd )) | |
12 | 11 | csbeq2i 3864 | . 2 ⊢ ⦋𝐴 / 𝑥⦌wrecs(𝑅, 𝐷, 𝐹) = ⦋𝐴 / 𝑥⦌frecs(𝑅, 𝐷, (𝐹 ∘ 2nd )) |
13 | df-wrecs 8244 | . 2 ⊢ wrecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝐹) = frecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, (⦋𝐴 / 𝑥⦌𝐹 ∘ 2nd )) | |
14 | 10, 12, 13 | 3eqtr4g 2798 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌wrecs(𝑅, 𝐷, 𝐹) = wrecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ⦋csb 3856 ∘ ccom 5638 2nd c2nd 7921 frecscfrecs 8212 wrecscwrecs 8243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-xp 5640 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-iota 6449 df-fv 6505 df-ov 7361 df-frecs 8213 df-wrecs 8244 |
This theorem is referenced by: csbrecsg 35845 |
Copyright terms: Public domain | W3C validator |