Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbwrecsg Structured version   Visualization version   GIF version

Theorem csbwrecsg 34745
Description: Move class substitution in and out of the well-founded recursive function generator. (Contributed by ML, 25-Oct-2020.)
Assertion
Ref Expression
csbwrecsg (𝐴𝑉𝐴 / 𝑥wrecs(𝑅, 𝐷, 𝐹) = wrecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥𝐹))

Proof of Theorem csbwrecsg
Dummy variables 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 csbuni 4832 . . 3 𝐴 / 𝑥 {𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} = 𝐴 / 𝑥{𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))}
2 csbab 4348 . . . . 5 𝐴 / 𝑥{𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} = {𝑓[𝐴 / 𝑥]𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))}
3 sbcex2 3784 . . . . . . 7 ([𝐴 / 𝑥]𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))) ↔ ∃𝑧[𝐴 / 𝑥](𝑓 Fn 𝑧 ∧ (𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))))
4 sbc3an 3788 . . . . . . . . 9 ([𝐴 / 𝑥](𝑓 Fn 𝑧 ∧ (𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))) ↔ ([𝐴 / 𝑥]𝑓 Fn 𝑧[𝐴 / 𝑥](𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ [𝐴 / 𝑥]𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))))
5 sbcg 3796 . . . . . . . . . 10 (𝐴𝑉 → ([𝐴 / 𝑥]𝑓 Fn 𝑧𝑓 Fn 𝑧))
6 sbcan 3771 . . . . . . . . . . 11 ([𝐴 / 𝑥](𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ↔ ([𝐴 / 𝑥]𝑧𝐷[𝐴 / 𝑥]𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧))
7 sbcssg 4424 . . . . . . . . . . . . 13 (𝐴𝑉 → ([𝐴 / 𝑥]𝑧𝐷𝐴 / 𝑥𝑧𝐴 / 𝑥𝐷))
8 csbconstg 3850 . . . . . . . . . . . . . 14 (𝐴𝑉𝐴 / 𝑥𝑧 = 𝑧)
98sseq1d 3949 . . . . . . . . . . . . 13 (𝐴𝑉 → (𝐴 / 𝑥𝑧𝐴 / 𝑥𝐷𝑧𝐴 / 𝑥𝐷))
107, 9bitrd 282 . . . . . . . . . . . 12 (𝐴𝑉 → ([𝐴 / 𝑥]𝑧𝐷𝑧𝐴 / 𝑥𝐷))
11 sbcralg 3806 . . . . . . . . . . . . 13 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧 ↔ ∀𝑦𝑧 [𝐴 / 𝑥]Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧))
12 sbcssg 4424 . . . . . . . . . . . . . . 15 (𝐴𝑉 → ([𝐴 / 𝑥]Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧𝐴 / 𝑥Pred(𝑅, 𝐷, 𝑦) ⊆ 𝐴 / 𝑥𝑧))
138sseq2d 3950 . . . . . . . . . . . . . . 15 (𝐴𝑉 → (𝐴 / 𝑥Pred(𝑅, 𝐷, 𝑦) ⊆ 𝐴 / 𝑥𝑧𝐴 / 𝑥Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧))
14 csbpredg 34744 . . . . . . . . . . . . . . . . 17 (𝐴𝑉𝐴 / 𝑥Pred(𝑅, 𝐷, 𝑦) = Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥𝑦))
15 csbconstg 3850 . . . . . . . . . . . . . . . . . 18 (𝐴𝑉𝐴 / 𝑥𝑦 = 𝑦)
16 predeq3 6124 . . . . . . . . . . . . . . . . . 18 (𝐴 / 𝑥𝑦 = 𝑦 → Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥𝑦) = Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦))
1715, 16syl 17 . . . . . . . . . . . . . . . . 17 (𝐴𝑉 → Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥𝑦) = Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦))
1814, 17eqtrd 2836 . . . . . . . . . . . . . . . 16 (𝐴𝑉𝐴 / 𝑥Pred(𝑅, 𝐷, 𝑦) = Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦))
1918sseq1d 3949 . . . . . . . . . . . . . . 15 (𝐴𝑉 → (𝐴 / 𝑥Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧 ↔ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦) ⊆ 𝑧))
2012, 13, 193bitrd 308 . . . . . . . . . . . . . 14 (𝐴𝑉 → ([𝐴 / 𝑥]Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧 ↔ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦) ⊆ 𝑧))
2120ralbidv 3165 . . . . . . . . . . . . 13 (𝐴𝑉 → (∀𝑦𝑧 [𝐴 / 𝑥]Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧 ↔ ∀𝑦𝑧 Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦) ⊆ 𝑧))
2211, 21bitrd 282 . . . . . . . . . . . 12 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧 ↔ ∀𝑦𝑧 Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦) ⊆ 𝑧))
2310, 22anbi12d 633 . . . . . . . . . . 11 (𝐴𝑉 → (([𝐴 / 𝑥]𝑧𝐷[𝐴 / 𝑥]𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ↔ (𝑧𝐴 / 𝑥𝐷 ∧ ∀𝑦𝑧 Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦) ⊆ 𝑧)))
246, 23syl5bb 286 . . . . . . . . . 10 (𝐴𝑉 → ([𝐴 / 𝑥](𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ↔ (𝑧𝐴 / 𝑥𝐷 ∧ ∀𝑦𝑧 Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦) ⊆ 𝑧)))
25 sbcralg 3806 . . . . . . . . . . 11 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) ↔ ∀𝑦𝑧 [𝐴 / 𝑥](𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))))
26 sbceqg 4320 . . . . . . . . . . . . 13 (𝐴𝑉 → ([𝐴 / 𝑥](𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) ↔ 𝐴 / 𝑥(𝑓𝑦) = 𝐴 / 𝑥(𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))))
27 csbconstg 3850 . . . . . . . . . . . . . 14 (𝐴𝑉𝐴 / 𝑥(𝑓𝑦) = (𝑓𝑦))
28 csbfv12 6692 . . . . . . . . . . . . . . 15 𝐴 / 𝑥(𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) = (𝐴 / 𝑥𝐹𝐴 / 𝑥(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))
29 csbres 5825 . . . . . . . . . . . . . . . . 17 𝐴 / 𝑥(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)) = (𝐴 / 𝑥𝑓𝐴 / 𝑥Pred(𝑅, 𝐷, 𝑦))
30 csbconstg 3850 . . . . . . . . . . . . . . . . . 18 (𝐴𝑉𝐴 / 𝑥𝑓 = 𝑓)
3130, 18reseq12d 5823 . . . . . . . . . . . . . . . . 17 (𝐴𝑉 → (𝐴 / 𝑥𝑓𝐴 / 𝑥Pred(𝑅, 𝐷, 𝑦)) = (𝑓 ↾ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦)))
3229, 31syl5eq 2848 . . . . . . . . . . . . . . . 16 (𝐴𝑉𝐴 / 𝑥(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)) = (𝑓 ↾ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦)))
3332fveq2d 6653 . . . . . . . . . . . . . . 15 (𝐴𝑉 → (𝐴 / 𝑥𝐹𝐴 / 𝑥(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) = (𝐴 / 𝑥𝐹‘(𝑓 ↾ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦))))
3428, 33syl5eq 2848 . . . . . . . . . . . . . 14 (𝐴𝑉𝐴 / 𝑥(𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) = (𝐴 / 𝑥𝐹‘(𝑓 ↾ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦))))
3527, 34eqeq12d 2817 . . . . . . . . . . . . 13 (𝐴𝑉 → (𝐴 / 𝑥(𝑓𝑦) = 𝐴 / 𝑥(𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) ↔ (𝑓𝑦) = (𝐴 / 𝑥𝐹‘(𝑓 ↾ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦)))))
3626, 35bitrd 282 . . . . . . . . . . . 12 (𝐴𝑉 → ([𝐴 / 𝑥](𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) ↔ (𝑓𝑦) = (𝐴 / 𝑥𝐹‘(𝑓 ↾ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦)))))
3736ralbidv 3165 . . . . . . . . . . 11 (𝐴𝑉 → (∀𝑦𝑧 [𝐴 / 𝑥](𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) ↔ ∀𝑦𝑧 (𝑓𝑦) = (𝐴 / 𝑥𝐹‘(𝑓 ↾ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦)))))
3825, 37bitrd 282 . . . . . . . . . 10 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) ↔ ∀𝑦𝑧 (𝑓𝑦) = (𝐴 / 𝑥𝐹‘(𝑓 ↾ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦)))))
395, 24, 383anbi123d 1433 . . . . . . . . 9 (𝐴𝑉 → (([𝐴 / 𝑥]𝑓 Fn 𝑧[𝐴 / 𝑥](𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ [𝐴 / 𝑥]𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))) ↔ (𝑓 Fn 𝑧 ∧ (𝑧𝐴 / 𝑥𝐷 ∧ ∀𝑦𝑧 Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐴 / 𝑥𝐹‘(𝑓 ↾ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦))))))
404, 39syl5bb 286 . . . . . . . 8 (𝐴𝑉 → ([𝐴 / 𝑥](𝑓 Fn 𝑧 ∧ (𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))) ↔ (𝑓 Fn 𝑧 ∧ (𝑧𝐴 / 𝑥𝐷 ∧ ∀𝑦𝑧 Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐴 / 𝑥𝐹‘(𝑓 ↾ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦))))))
4140exbidv 1922 . . . . . . 7 (𝐴𝑉 → (∃𝑧[𝐴 / 𝑥](𝑓 Fn 𝑧 ∧ (𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))) ↔ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐴 / 𝑥𝐷 ∧ ∀𝑦𝑧 Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐴 / 𝑥𝐹‘(𝑓 ↾ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦))))))
423, 41syl5bb 286 . . . . . 6 (𝐴𝑉 → ([𝐴 / 𝑥]𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))) ↔ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐴 / 𝑥𝐷 ∧ ∀𝑦𝑧 Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐴 / 𝑥𝐹‘(𝑓 ↾ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦))))))
4342abbidv 2865 . . . . 5 (𝐴𝑉 → {𝑓[𝐴 / 𝑥]𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} = {𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐴 / 𝑥𝐷 ∧ ∀𝑦𝑧 Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐴 / 𝑥𝐹‘(𝑓 ↾ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦))))})
442, 43syl5eq 2848 . . . 4 (𝐴𝑉𝐴 / 𝑥{𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} = {𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐴 / 𝑥𝐷 ∧ ∀𝑦𝑧 Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐴 / 𝑥𝐹‘(𝑓 ↾ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦))))})
4544unieqd 4817 . . 3 (𝐴𝑉 𝐴 / 𝑥{𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} = {𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐴 / 𝑥𝐷 ∧ ∀𝑦𝑧 Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐴 / 𝑥𝐹‘(𝑓 ↾ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦))))})
461, 45syl5eq 2848 . 2 (𝐴𝑉𝐴 / 𝑥 {𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} = {𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐴 / 𝑥𝐷 ∧ ∀𝑦𝑧 Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐴 / 𝑥𝐹‘(𝑓 ↾ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦))))})
47 df-wrecs 7934 . . 3 wrecs(𝑅, 𝐷, 𝐹) = {𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))}
4847csbeq2i 3839 . 2 𝐴 / 𝑥wrecs(𝑅, 𝐷, 𝐹) = 𝐴 / 𝑥 {𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))}
49 df-wrecs 7934 . 2 wrecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥𝐹) = {𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐴 / 𝑥𝐷 ∧ ∀𝑦𝑧 Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐴 / 𝑥𝐹‘(𝑓 ↾ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦))))}
5046, 48, 493eqtr4g 2861 1 (𝐴𝑉𝐴 / 𝑥wrecs(𝑅, 𝐷, 𝐹) = wrecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2112  {cab 2779  wral 3109  [wsbc 3723  csb 3831  wss 3884   cuni 4803  cres 5525  Predcpred 6119   Fn wfn 6323  cfv 6328  wrecscwrecs 7933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-xp 5529  df-cnv 5531  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-iota 6287  df-fv 6336  df-wrecs 7934
This theorem is referenced by:  csbrecsg  34746
  Copyright terms: Public domain W3C validator