![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbwrecsg | Structured version Visualization version GIF version |
Description: Move class substitution in and out of the well-founded recursive function generator. (Contributed by ML, 25-Oct-2020.) (Revised by Scott Fenton, 18-Nov-2024.) |
Ref | Expression |
---|---|
csbwrecsg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌wrecs(𝑅, 𝐷, 𝐹) = wrecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbfrecsg 8325 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌frecs(𝑅, 𝐷, (𝐹 ∘ 2nd )) = frecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌(𝐹 ∘ 2nd ))) | |
2 | eqid 2740 | . . . 4 ⊢ ⦋𝐴 / 𝑥⦌𝑅 = ⦋𝐴 / 𝑥⦌𝑅 | |
3 | eqid 2740 | . . . 4 ⊢ ⦋𝐴 / 𝑥⦌𝐷 = ⦋𝐴 / 𝑥⦌𝐷 | |
4 | csbcog 6328 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐹 ∘ 2nd ) = (⦋𝐴 / 𝑥⦌𝐹 ∘ ⦋𝐴 / 𝑥⦌2nd )) | |
5 | csbconstg 3940 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌2nd = 2nd ) | |
6 | 5 | coeq2d 5887 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝐹 ∘ ⦋𝐴 / 𝑥⦌2nd ) = (⦋𝐴 / 𝑥⦌𝐹 ∘ 2nd )) |
7 | 4, 6 | eqtrd 2780 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐹 ∘ 2nd ) = (⦋𝐴 / 𝑥⦌𝐹 ∘ 2nd )) |
8 | frecseq123 8323 | . . . 4 ⊢ ((⦋𝐴 / 𝑥⦌𝑅 = ⦋𝐴 / 𝑥⦌𝑅 ∧ ⦋𝐴 / 𝑥⦌𝐷 = ⦋𝐴 / 𝑥⦌𝐷 ∧ ⦋𝐴 / 𝑥⦌(𝐹 ∘ 2nd ) = (⦋𝐴 / 𝑥⦌𝐹 ∘ 2nd )) → frecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌(𝐹 ∘ 2nd )) = frecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, (⦋𝐴 / 𝑥⦌𝐹 ∘ 2nd ))) | |
9 | 2, 3, 7, 8 | mp3an12i 1465 | . . 3 ⊢ (𝐴 ∈ 𝑉 → frecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌(𝐹 ∘ 2nd )) = frecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, (⦋𝐴 / 𝑥⦌𝐹 ∘ 2nd ))) |
10 | 1, 9 | eqtrd 2780 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌frecs(𝑅, 𝐷, (𝐹 ∘ 2nd )) = frecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, (⦋𝐴 / 𝑥⦌𝐹 ∘ 2nd ))) |
11 | df-wrecs 8353 | . . 3 ⊢ wrecs(𝑅, 𝐷, 𝐹) = frecs(𝑅, 𝐷, (𝐹 ∘ 2nd )) | |
12 | 11 | csbeq2i 3929 | . 2 ⊢ ⦋𝐴 / 𝑥⦌wrecs(𝑅, 𝐷, 𝐹) = ⦋𝐴 / 𝑥⦌frecs(𝑅, 𝐷, (𝐹 ∘ 2nd )) |
13 | df-wrecs 8353 | . 2 ⊢ wrecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝐹) = frecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, (⦋𝐴 / 𝑥⦌𝐹 ∘ 2nd )) | |
14 | 10, 12, 13 | 3eqtr4g 2805 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌wrecs(𝑅, 𝐷, 𝐹) = wrecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ⦋csb 3921 ∘ ccom 5704 2nd c2nd 8029 frecscfrecs 8321 wrecscwrecs 8352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-iota 6525 df-fv 6581 df-ov 7451 df-frecs 8322 df-wrecs 8353 |
This theorem is referenced by: csbrecsg 37294 |
Copyright terms: Public domain | W3C validator |