| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbwrecsg | Structured version Visualization version GIF version | ||
| Description: Move class substitution in and out of the well-founded recursive function generator. (Contributed by ML, 25-Oct-2020.) (Revised by Scott Fenton, 18-Nov-2024.) |
| Ref | Expression |
|---|---|
| csbwrecsg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌wrecs(𝑅, 𝐷, 𝐹) = wrecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbfrecsg 8263 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌frecs(𝑅, 𝐷, (𝐹 ∘ 2nd )) = frecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌(𝐹 ∘ 2nd ))) | |
| 2 | eqid 2729 | . . . 4 ⊢ ⦋𝐴 / 𝑥⦌𝑅 = ⦋𝐴 / 𝑥⦌𝑅 | |
| 3 | eqid 2729 | . . . 4 ⊢ ⦋𝐴 / 𝑥⦌𝐷 = ⦋𝐴 / 𝑥⦌𝐷 | |
| 4 | csbcog 6270 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐹 ∘ 2nd ) = (⦋𝐴 / 𝑥⦌𝐹 ∘ ⦋𝐴 / 𝑥⦌2nd )) | |
| 5 | csbconstg 3881 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌2nd = 2nd ) | |
| 6 | 5 | coeq2d 5826 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝐹 ∘ ⦋𝐴 / 𝑥⦌2nd ) = (⦋𝐴 / 𝑥⦌𝐹 ∘ 2nd )) |
| 7 | 4, 6 | eqtrd 2764 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐹 ∘ 2nd ) = (⦋𝐴 / 𝑥⦌𝐹 ∘ 2nd )) |
| 8 | frecseq123 8261 | . . . 4 ⊢ ((⦋𝐴 / 𝑥⦌𝑅 = ⦋𝐴 / 𝑥⦌𝑅 ∧ ⦋𝐴 / 𝑥⦌𝐷 = ⦋𝐴 / 𝑥⦌𝐷 ∧ ⦋𝐴 / 𝑥⦌(𝐹 ∘ 2nd ) = (⦋𝐴 / 𝑥⦌𝐹 ∘ 2nd )) → frecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌(𝐹 ∘ 2nd )) = frecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, (⦋𝐴 / 𝑥⦌𝐹 ∘ 2nd ))) | |
| 9 | 2, 3, 7, 8 | mp3an12i 1467 | . . 3 ⊢ (𝐴 ∈ 𝑉 → frecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌(𝐹 ∘ 2nd )) = frecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, (⦋𝐴 / 𝑥⦌𝐹 ∘ 2nd ))) |
| 10 | 1, 9 | eqtrd 2764 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌frecs(𝑅, 𝐷, (𝐹 ∘ 2nd )) = frecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, (⦋𝐴 / 𝑥⦌𝐹 ∘ 2nd ))) |
| 11 | df-wrecs 8291 | . . 3 ⊢ wrecs(𝑅, 𝐷, 𝐹) = frecs(𝑅, 𝐷, (𝐹 ∘ 2nd )) | |
| 12 | 11 | csbeq2i 3870 | . 2 ⊢ ⦋𝐴 / 𝑥⦌wrecs(𝑅, 𝐷, 𝐹) = ⦋𝐴 / 𝑥⦌frecs(𝑅, 𝐷, (𝐹 ∘ 2nd )) |
| 13 | df-wrecs 8291 | . 2 ⊢ wrecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝐹) = frecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, (⦋𝐴 / 𝑥⦌𝐹 ∘ 2nd )) | |
| 14 | 10, 12, 13 | 3eqtr4g 2789 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌wrecs(𝑅, 𝐷, 𝐹) = wrecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⦋csb 3862 ∘ ccom 5642 2nd c2nd 7967 frecscfrecs 8259 wrecscwrecs 8290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-iota 6464 df-fv 6519 df-ov 7390 df-frecs 8260 df-wrecs 8291 |
| This theorem is referenced by: csbrecsg 37316 |
| Copyright terms: Public domain | W3C validator |