![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbwrecsg | Structured version Visualization version GIF version |
Description: Move class substitution in and out of the well-founded recursive function generator. (Contributed by ML, 25-Oct-2020.) (Revised by Scott Fenton, 18-Nov-2024.) |
Ref | Expression |
---|---|
csbwrecsg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌wrecs(𝑅, 𝐷, 𝐹) = wrecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbfrecsg 8308 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌frecs(𝑅, 𝐷, (𝐹 ∘ 2nd )) = frecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌(𝐹 ∘ 2nd ))) | |
2 | eqid 2735 | . . . 4 ⊢ ⦋𝐴 / 𝑥⦌𝑅 = ⦋𝐴 / 𝑥⦌𝑅 | |
3 | eqid 2735 | . . . 4 ⊢ ⦋𝐴 / 𝑥⦌𝐷 = ⦋𝐴 / 𝑥⦌𝐷 | |
4 | csbcog 6319 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐹 ∘ 2nd ) = (⦋𝐴 / 𝑥⦌𝐹 ∘ ⦋𝐴 / 𝑥⦌2nd )) | |
5 | csbconstg 3927 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌2nd = 2nd ) | |
6 | 5 | coeq2d 5876 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝐹 ∘ ⦋𝐴 / 𝑥⦌2nd ) = (⦋𝐴 / 𝑥⦌𝐹 ∘ 2nd )) |
7 | 4, 6 | eqtrd 2775 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐹 ∘ 2nd ) = (⦋𝐴 / 𝑥⦌𝐹 ∘ 2nd )) |
8 | frecseq123 8306 | . . . 4 ⊢ ((⦋𝐴 / 𝑥⦌𝑅 = ⦋𝐴 / 𝑥⦌𝑅 ∧ ⦋𝐴 / 𝑥⦌𝐷 = ⦋𝐴 / 𝑥⦌𝐷 ∧ ⦋𝐴 / 𝑥⦌(𝐹 ∘ 2nd ) = (⦋𝐴 / 𝑥⦌𝐹 ∘ 2nd )) → frecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌(𝐹 ∘ 2nd )) = frecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, (⦋𝐴 / 𝑥⦌𝐹 ∘ 2nd ))) | |
9 | 2, 3, 7, 8 | mp3an12i 1464 | . . 3 ⊢ (𝐴 ∈ 𝑉 → frecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌(𝐹 ∘ 2nd )) = frecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, (⦋𝐴 / 𝑥⦌𝐹 ∘ 2nd ))) |
10 | 1, 9 | eqtrd 2775 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌frecs(𝑅, 𝐷, (𝐹 ∘ 2nd )) = frecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, (⦋𝐴 / 𝑥⦌𝐹 ∘ 2nd ))) |
11 | df-wrecs 8336 | . . 3 ⊢ wrecs(𝑅, 𝐷, 𝐹) = frecs(𝑅, 𝐷, (𝐹 ∘ 2nd )) | |
12 | 11 | csbeq2i 3916 | . 2 ⊢ ⦋𝐴 / 𝑥⦌wrecs(𝑅, 𝐷, 𝐹) = ⦋𝐴 / 𝑥⦌frecs(𝑅, 𝐷, (𝐹 ∘ 2nd )) |
13 | df-wrecs 8336 | . 2 ⊢ wrecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝐹) = frecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, (⦋𝐴 / 𝑥⦌𝐹 ∘ 2nd )) | |
14 | 10, 12, 13 | 3eqtr4g 2800 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌wrecs(𝑅, 𝐷, 𝐹) = wrecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ⦋csb 3908 ∘ ccom 5693 2nd c2nd 8012 frecscfrecs 8304 wrecscwrecs 8335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-iota 6516 df-fv 6571 df-ov 7434 df-frecs 8305 df-wrecs 8336 |
This theorem is referenced by: csbrecsg 37311 |
Copyright terms: Public domain | W3C validator |