Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbwrecsg Structured version   Visualization version   GIF version

Theorem csbwrecsg 33492
Description: Move class substitution in and out of the well-founded recursive function generator. (Contributed by ML, 25-Oct-2020.)
Assertion
Ref Expression
csbwrecsg (𝐴𝑉𝐴 / 𝑥wrecs(𝑅, 𝐷, 𝐹) = wrecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥𝐹))

Proof of Theorem csbwrecsg
Dummy variables 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 csbuni 4667 . . 3 𝐴 / 𝑥 {𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} = 𝐴 / 𝑥{𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))}
2 csbab 4213 . . . . 5 𝐴 / 𝑥{𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} = {𝑓[𝐴 / 𝑥]𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))}
3 sbcex2 3691 . . . . . . 7 ([𝐴 / 𝑥]𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))) ↔ ∃𝑧[𝐴 / 𝑥](𝑓 Fn 𝑧 ∧ (𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))))
4 sbc3an 3698 . . . . . . . . 9 ([𝐴 / 𝑥](𝑓 Fn 𝑧 ∧ (𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))) ↔ ([𝐴 / 𝑥]𝑓 Fn 𝑧[𝐴 / 𝑥](𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ [𝐴 / 𝑥]𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))))
5 sbcg 3706 . . . . . . . . . 10 (𝐴𝑉 → ([𝐴 / 𝑥]𝑓 Fn 𝑧𝑓 Fn 𝑧))
6 sbcan 3683 . . . . . . . . . . 11 ([𝐴 / 𝑥](𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ↔ ([𝐴 / 𝑥]𝑧𝐷[𝐴 / 𝑥]𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧))
7 sbcssg 4285 . . . . . . . . . . . . 13 (𝐴𝑉 → ([𝐴 / 𝑥]𝑧𝐷𝐴 / 𝑥𝑧𝐴 / 𝑥𝐷))
8 csbconstg 3748 . . . . . . . . . . . . . 14 (𝐴𝑉𝐴 / 𝑥𝑧 = 𝑧)
98sseq1d 3836 . . . . . . . . . . . . 13 (𝐴𝑉 → (𝐴 / 𝑥𝑧𝐴 / 𝑥𝐷𝑧𝐴 / 𝑥𝐷))
107, 9bitrd 270 . . . . . . . . . . . 12 (𝐴𝑉 → ([𝐴 / 𝑥]𝑧𝐷𝑧𝐴 / 𝑥𝐷))
11 sbcralg 3715 . . . . . . . . . . . . 13 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧 ↔ ∀𝑦𝑧 [𝐴 / 𝑥]Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧))
12 sbcssg 4285 . . . . . . . . . . . . . . 15 (𝐴𝑉 → ([𝐴 / 𝑥]Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧𝐴 / 𝑥Pred(𝑅, 𝐷, 𝑦) ⊆ 𝐴 / 𝑥𝑧))
138sseq2d 3837 . . . . . . . . . . . . . . 15 (𝐴𝑉 → (𝐴 / 𝑥Pred(𝑅, 𝐷, 𝑦) ⊆ 𝐴 / 𝑥𝑧𝐴 / 𝑥Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧))
14 csbpredg 33491 . . . . . . . . . . . . . . . . 17 (𝐴𝑉𝐴 / 𝑥Pred(𝑅, 𝐷, 𝑦) = Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥𝑦))
15 csbconstg 3748 . . . . . . . . . . . . . . . . . 18 (𝐴𝑉𝐴 / 𝑥𝑦 = 𝑦)
16 predeq3 5904 . . . . . . . . . . . . . . . . . 18 (𝐴 / 𝑥𝑦 = 𝑦 → Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥𝑦) = Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦))
1715, 16syl 17 . . . . . . . . . . . . . . . . 17 (𝐴𝑉 → Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥𝑦) = Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦))
1814, 17eqtrd 2847 . . . . . . . . . . . . . . . 16 (𝐴𝑉𝐴 / 𝑥Pred(𝑅, 𝐷, 𝑦) = Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦))
1918sseq1d 3836 . . . . . . . . . . . . . . 15 (𝐴𝑉 → (𝐴 / 𝑥Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧 ↔ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦) ⊆ 𝑧))
2012, 13, 193bitrd 296 . . . . . . . . . . . . . 14 (𝐴𝑉 → ([𝐴 / 𝑥]Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧 ↔ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦) ⊆ 𝑧))
2120ralbidv 3181 . . . . . . . . . . . . 13 (𝐴𝑉 → (∀𝑦𝑧 [𝐴 / 𝑥]Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧 ↔ ∀𝑦𝑧 Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦) ⊆ 𝑧))
2211, 21bitrd 270 . . . . . . . . . . . 12 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧 ↔ ∀𝑦𝑧 Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦) ⊆ 𝑧))
2310, 22anbi12d 618 . . . . . . . . . . 11 (𝐴𝑉 → (([𝐴 / 𝑥]𝑧𝐷[𝐴 / 𝑥]𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ↔ (𝑧𝐴 / 𝑥𝐷 ∧ ∀𝑦𝑧 Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦) ⊆ 𝑧)))
246, 23syl5bb 274 . . . . . . . . . 10 (𝐴𝑉 → ([𝐴 / 𝑥](𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ↔ (𝑧𝐴 / 𝑥𝐷 ∧ ∀𝑦𝑧 Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦) ⊆ 𝑧)))
25 sbcralg 3715 . . . . . . . . . . 11 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) ↔ ∀𝑦𝑧 [𝐴 / 𝑥](𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))))
26 sbceqg 4188 . . . . . . . . . . . . 13 (𝐴𝑉 → ([𝐴 / 𝑥](𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) ↔ 𝐴 / 𝑥(𝑓𝑦) = 𝐴 / 𝑥(𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))))
27 csbconstg 3748 . . . . . . . . . . . . . 14 (𝐴𝑉𝐴 / 𝑥(𝑓𝑦) = (𝑓𝑦))
28 csbfv12 6454 . . . . . . . . . . . . . . 15 𝐴 / 𝑥(𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) = (𝐴 / 𝑥𝐹𝐴 / 𝑥(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))
29 csbres 5607 . . . . . . . . . . . . . . . . 17 𝐴 / 𝑥(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)) = (𝐴 / 𝑥𝑓𝐴 / 𝑥Pred(𝑅, 𝐷, 𝑦))
30 csbconstg 3748 . . . . . . . . . . . . . . . . . 18 (𝐴𝑉𝐴 / 𝑥𝑓 = 𝑓)
3130, 18reseq12d 5605 . . . . . . . . . . . . . . . . 17 (𝐴𝑉 → (𝐴 / 𝑥𝑓𝐴 / 𝑥Pred(𝑅, 𝐷, 𝑦)) = (𝑓 ↾ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦)))
3229, 31syl5eq 2859 . . . . . . . . . . . . . . . 16 (𝐴𝑉𝐴 / 𝑥(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)) = (𝑓 ↾ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦)))
3332fveq2d 6415 . . . . . . . . . . . . . . 15 (𝐴𝑉 → (𝐴 / 𝑥𝐹𝐴 / 𝑥(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) = (𝐴 / 𝑥𝐹‘(𝑓 ↾ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦))))
3428, 33syl5eq 2859 . . . . . . . . . . . . . 14 (𝐴𝑉𝐴 / 𝑥(𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) = (𝐴 / 𝑥𝐹‘(𝑓 ↾ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦))))
3527, 34eqeq12d 2828 . . . . . . . . . . . . 13 (𝐴𝑉 → (𝐴 / 𝑥(𝑓𝑦) = 𝐴 / 𝑥(𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) ↔ (𝑓𝑦) = (𝐴 / 𝑥𝐹‘(𝑓 ↾ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦)))))
3626, 35bitrd 270 . . . . . . . . . . . 12 (𝐴𝑉 → ([𝐴 / 𝑥](𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) ↔ (𝑓𝑦) = (𝐴 / 𝑥𝐹‘(𝑓 ↾ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦)))))
3736ralbidv 3181 . . . . . . . . . . 11 (𝐴𝑉 → (∀𝑦𝑧 [𝐴 / 𝑥](𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) ↔ ∀𝑦𝑧 (𝑓𝑦) = (𝐴 / 𝑥𝐹‘(𝑓 ↾ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦)))))
3825, 37bitrd 270 . . . . . . . . . 10 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) ↔ ∀𝑦𝑧 (𝑓𝑦) = (𝐴 / 𝑥𝐹‘(𝑓 ↾ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦)))))
395, 24, 383anbi123d 1553 . . . . . . . . 9 (𝐴𝑉 → (([𝐴 / 𝑥]𝑓 Fn 𝑧[𝐴 / 𝑥](𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ [𝐴 / 𝑥]𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))) ↔ (𝑓 Fn 𝑧 ∧ (𝑧𝐴 / 𝑥𝐷 ∧ ∀𝑦𝑧 Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐴 / 𝑥𝐹‘(𝑓 ↾ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦))))))
404, 39syl5bb 274 . . . . . . . 8 (𝐴𝑉 → ([𝐴 / 𝑥](𝑓 Fn 𝑧 ∧ (𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))) ↔ (𝑓 Fn 𝑧 ∧ (𝑧𝐴 / 𝑥𝐷 ∧ ∀𝑦𝑧 Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐴 / 𝑥𝐹‘(𝑓 ↾ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦))))))
4140exbidv 2012 . . . . . . 7 (𝐴𝑉 → (∃𝑧[𝐴 / 𝑥](𝑓 Fn 𝑧 ∧ (𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))) ↔ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐴 / 𝑥𝐷 ∧ ∀𝑦𝑧 Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐴 / 𝑥𝐹‘(𝑓 ↾ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦))))))
423, 41syl5bb 274 . . . . . 6 (𝐴𝑉 → ([𝐴 / 𝑥]𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))) ↔ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐴 / 𝑥𝐷 ∧ ∀𝑦𝑧 Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐴 / 𝑥𝐹‘(𝑓 ↾ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦))))))
4342abbidv 2932 . . . . 5 (𝐴𝑉 → {𝑓[𝐴 / 𝑥]𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} = {𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐴 / 𝑥𝐷 ∧ ∀𝑦𝑧 Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐴 / 𝑥𝐹‘(𝑓 ↾ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦))))})
442, 43syl5eq 2859 . . . 4 (𝐴𝑉𝐴 / 𝑥{𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} = {𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐴 / 𝑥𝐷 ∧ ∀𝑦𝑧 Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐴 / 𝑥𝐹‘(𝑓 ↾ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦))))})
4544unieqd 4647 . . 3 (𝐴𝑉 𝐴 / 𝑥{𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} = {𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐴 / 𝑥𝐷 ∧ ∀𝑦𝑧 Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐴 / 𝑥𝐹‘(𝑓 ↾ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦))))})
461, 45syl5eq 2859 . 2 (𝐴𝑉𝐴 / 𝑥 {𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} = {𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐴 / 𝑥𝐷 ∧ ∀𝑦𝑧 Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐴 / 𝑥𝐹‘(𝑓 ↾ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦))))})
47 df-wrecs 7645 . . 3 wrecs(𝑅, 𝐷, 𝐹) = {𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))}
4847csbeq2i 4197 . 2 𝐴 / 𝑥wrecs(𝑅, 𝐷, 𝐹) = 𝐴 / 𝑥 {𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐷 ∧ ∀𝑦𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))}
49 df-wrecs 7645 . 2 wrecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥𝐹) = {𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧𝐴 / 𝑥𝐷 ∧ ∀𝑦𝑧 Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦𝑧 (𝑓𝑦) = (𝐴 / 𝑥𝐹‘(𝑓 ↾ Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝑦))))}
5046, 48, 493eqtr4g 2872 1 (𝐴𝑉𝐴 / 𝑥wrecs(𝑅, 𝐷, 𝐹) = wrecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1100   = wceq 1637  wex 1859  wcel 2157  {cab 2799  wral 3103  [wsbc 3640  csb 3735  wss 3776   cuni 4637  cres 5320  Predcpred 5899   Fn wfn 6099  cfv 6104  wrecscwrecs 7644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-sep 4982  ax-nul 4990  ax-pow 5042  ax-pr 5103
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ne 2986  df-ral 3108  df-rex 3109  df-rab 3112  df-v 3400  df-sbc 3641  df-csb 3736  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-nul 4124  df-if 4287  df-sn 4378  df-pr 4380  df-op 4384  df-uni 4638  df-br 4852  df-opab 4914  df-xp 5324  df-cnv 5326  df-dm 5328  df-rn 5329  df-res 5330  df-ima 5331  df-pred 5900  df-iota 6067  df-fv 6112  df-wrecs 7645
This theorem is referenced by:  csbrecsg  33493
  Copyright terms: Public domain W3C validator