MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbwrecsg Structured version   Visualization version   GIF version

Theorem csbwrecsg 8320
Description: Move class substitution in and out of the well-founded recursive function generator. (Contributed by ML, 25-Oct-2020.) (Revised by Scott Fenton, 18-Nov-2024.)
Assertion
Ref Expression
csbwrecsg (𝐴𝑉𝐴 / 𝑥wrecs(𝑅, 𝐷, 𝐹) = wrecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥𝐹))

Proof of Theorem csbwrecsg
StepHypRef Expression
1 csbfrecsg 8283 . . 3 (𝐴𝑉𝐴 / 𝑥frecs(𝑅, 𝐷, (𝐹 ∘ 2nd )) = frecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥(𝐹 ∘ 2nd )))
2 eqid 2735 . . . 4 𝐴 / 𝑥𝑅 = 𝐴 / 𝑥𝑅
3 eqid 2735 . . . 4 𝐴 / 𝑥𝐷 = 𝐴 / 𝑥𝐷
4 csbcog 6286 . . . . 5 (𝐴𝑉𝐴 / 𝑥(𝐹 ∘ 2nd ) = (𝐴 / 𝑥𝐹𝐴 / 𝑥2nd ))
5 csbconstg 3893 . . . . . 6 (𝐴𝑉𝐴 / 𝑥2nd = 2nd )
65coeq2d 5842 . . . . 5 (𝐴𝑉 → (𝐴 / 𝑥𝐹𝐴 / 𝑥2nd ) = (𝐴 / 𝑥𝐹 ∘ 2nd ))
74, 6eqtrd 2770 . . . 4 (𝐴𝑉𝐴 / 𝑥(𝐹 ∘ 2nd ) = (𝐴 / 𝑥𝐹 ∘ 2nd ))
8 frecseq123 8281 . . . 4 ((𝐴 / 𝑥𝑅 = 𝐴 / 𝑥𝑅𝐴 / 𝑥𝐷 = 𝐴 / 𝑥𝐷𝐴 / 𝑥(𝐹 ∘ 2nd ) = (𝐴 / 𝑥𝐹 ∘ 2nd )) → frecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥(𝐹 ∘ 2nd )) = frecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, (𝐴 / 𝑥𝐹 ∘ 2nd )))
92, 3, 7, 8mp3an12i 1467 . . 3 (𝐴𝑉 → frecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥(𝐹 ∘ 2nd )) = frecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, (𝐴 / 𝑥𝐹 ∘ 2nd )))
101, 9eqtrd 2770 . 2 (𝐴𝑉𝐴 / 𝑥frecs(𝑅, 𝐷, (𝐹 ∘ 2nd )) = frecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, (𝐴 / 𝑥𝐹 ∘ 2nd )))
11 df-wrecs 8311 . . 3 wrecs(𝑅, 𝐷, 𝐹) = frecs(𝑅, 𝐷, (𝐹 ∘ 2nd ))
1211csbeq2i 3882 . 2 𝐴 / 𝑥wrecs(𝑅, 𝐷, 𝐹) = 𝐴 / 𝑥frecs(𝑅, 𝐷, (𝐹 ∘ 2nd ))
13 df-wrecs 8311 . 2 wrecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥𝐹) = frecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, (𝐴 / 𝑥𝐹 ∘ 2nd ))
1410, 12, 133eqtr4g 2795 1 (𝐴𝑉𝐴 / 𝑥wrecs(𝑅, 𝐷, 𝐹) = wrecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  csb 3874  ccom 5658  2nd c2nd 7987  frecscfrecs 8279  wrecscwrecs 8310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-xp 5660  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-iota 6484  df-fv 6539  df-ov 7408  df-frecs 8280  df-wrecs 8311
This theorem is referenced by:  csbrecsg  37346
  Copyright terms: Public domain W3C validator