MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbwrecsg Structured version   Visualization version   GIF version

Theorem csbwrecsg 8345
Description: Move class substitution in and out of the well-founded recursive function generator. (Contributed by ML, 25-Oct-2020.) (Revised by Scott Fenton, 18-Nov-2024.)
Assertion
Ref Expression
csbwrecsg (𝐴𝑉𝐴 / 𝑥wrecs(𝑅, 𝐷, 𝐹) = wrecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥𝐹))

Proof of Theorem csbwrecsg
StepHypRef Expression
1 csbfrecsg 8308 . . 3 (𝐴𝑉𝐴 / 𝑥frecs(𝑅, 𝐷, (𝐹 ∘ 2nd )) = frecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥(𝐹 ∘ 2nd )))
2 eqid 2735 . . . 4 𝐴 / 𝑥𝑅 = 𝐴 / 𝑥𝑅
3 eqid 2735 . . . 4 𝐴 / 𝑥𝐷 = 𝐴 / 𝑥𝐷
4 csbcog 6319 . . . . 5 (𝐴𝑉𝐴 / 𝑥(𝐹 ∘ 2nd ) = (𝐴 / 𝑥𝐹𝐴 / 𝑥2nd ))
5 csbconstg 3927 . . . . . 6 (𝐴𝑉𝐴 / 𝑥2nd = 2nd )
65coeq2d 5876 . . . . 5 (𝐴𝑉 → (𝐴 / 𝑥𝐹𝐴 / 𝑥2nd ) = (𝐴 / 𝑥𝐹 ∘ 2nd ))
74, 6eqtrd 2775 . . . 4 (𝐴𝑉𝐴 / 𝑥(𝐹 ∘ 2nd ) = (𝐴 / 𝑥𝐹 ∘ 2nd ))
8 frecseq123 8306 . . . 4 ((𝐴 / 𝑥𝑅 = 𝐴 / 𝑥𝑅𝐴 / 𝑥𝐷 = 𝐴 / 𝑥𝐷𝐴 / 𝑥(𝐹 ∘ 2nd ) = (𝐴 / 𝑥𝐹 ∘ 2nd )) → frecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥(𝐹 ∘ 2nd )) = frecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, (𝐴 / 𝑥𝐹 ∘ 2nd )))
92, 3, 7, 8mp3an12i 1464 . . 3 (𝐴𝑉 → frecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥(𝐹 ∘ 2nd )) = frecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, (𝐴 / 𝑥𝐹 ∘ 2nd )))
101, 9eqtrd 2775 . 2 (𝐴𝑉𝐴 / 𝑥frecs(𝑅, 𝐷, (𝐹 ∘ 2nd )) = frecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, (𝐴 / 𝑥𝐹 ∘ 2nd )))
11 df-wrecs 8336 . . 3 wrecs(𝑅, 𝐷, 𝐹) = frecs(𝑅, 𝐷, (𝐹 ∘ 2nd ))
1211csbeq2i 3916 . 2 𝐴 / 𝑥wrecs(𝑅, 𝐷, 𝐹) = 𝐴 / 𝑥frecs(𝑅, 𝐷, (𝐹 ∘ 2nd ))
13 df-wrecs 8336 . 2 wrecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥𝐹) = frecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, (𝐴 / 𝑥𝐹 ∘ 2nd ))
1410, 12, 133eqtr4g 2800 1 (𝐴𝑉𝐴 / 𝑥wrecs(𝑅, 𝐷, 𝐹) = wrecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  csb 3908  ccom 5693  2nd c2nd 8012  frecscfrecs 8304  wrecscwrecs 8335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-xp 5695  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-iota 6516  df-fv 6571  df-ov 7434  df-frecs 8305  df-wrecs 8336
This theorem is referenced by:  csbrecsg  37311
  Copyright terms: Public domain W3C validator