MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbwrecsg Structured version   Visualization version   GIF version

Theorem csbwrecsg 8300
Description: Move class substitution in and out of the well-founded recursive function generator. (Contributed by ML, 25-Oct-2020.) (Revised by Scott Fenton, 18-Nov-2024.)
Assertion
Ref Expression
csbwrecsg (𝐴𝑉𝐴 / 𝑥wrecs(𝑅, 𝐷, 𝐹) = wrecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥𝐹))

Proof of Theorem csbwrecsg
StepHypRef Expression
1 csbfrecsg 8266 . . 3 (𝐴𝑉𝐴 / 𝑥frecs(𝑅, 𝐷, (𝐹 ∘ 2nd )) = frecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥(𝐹 ∘ 2nd )))
2 eqid 2730 . . . 4 𝐴 / 𝑥𝑅 = 𝐴 / 𝑥𝑅
3 eqid 2730 . . . 4 𝐴 / 𝑥𝐷 = 𝐴 / 𝑥𝐷
4 csbcog 6273 . . . . 5 (𝐴𝑉𝐴 / 𝑥(𝐹 ∘ 2nd ) = (𝐴 / 𝑥𝐹𝐴 / 𝑥2nd ))
5 csbconstg 3884 . . . . . 6 (𝐴𝑉𝐴 / 𝑥2nd = 2nd )
65coeq2d 5829 . . . . 5 (𝐴𝑉 → (𝐴 / 𝑥𝐹𝐴 / 𝑥2nd ) = (𝐴 / 𝑥𝐹 ∘ 2nd ))
74, 6eqtrd 2765 . . . 4 (𝐴𝑉𝐴 / 𝑥(𝐹 ∘ 2nd ) = (𝐴 / 𝑥𝐹 ∘ 2nd ))
8 frecseq123 8264 . . . 4 ((𝐴 / 𝑥𝑅 = 𝐴 / 𝑥𝑅𝐴 / 𝑥𝐷 = 𝐴 / 𝑥𝐷𝐴 / 𝑥(𝐹 ∘ 2nd ) = (𝐴 / 𝑥𝐹 ∘ 2nd )) → frecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥(𝐹 ∘ 2nd )) = frecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, (𝐴 / 𝑥𝐹 ∘ 2nd )))
92, 3, 7, 8mp3an12i 1467 . . 3 (𝐴𝑉 → frecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥(𝐹 ∘ 2nd )) = frecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, (𝐴 / 𝑥𝐹 ∘ 2nd )))
101, 9eqtrd 2765 . 2 (𝐴𝑉𝐴 / 𝑥frecs(𝑅, 𝐷, (𝐹 ∘ 2nd )) = frecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, (𝐴 / 𝑥𝐹 ∘ 2nd )))
11 df-wrecs 8294 . . 3 wrecs(𝑅, 𝐷, 𝐹) = frecs(𝑅, 𝐷, (𝐹 ∘ 2nd ))
1211csbeq2i 3873 . 2 𝐴 / 𝑥wrecs(𝑅, 𝐷, 𝐹) = 𝐴 / 𝑥frecs(𝑅, 𝐷, (𝐹 ∘ 2nd ))
13 df-wrecs 8294 . 2 wrecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥𝐹) = frecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, (𝐴 / 𝑥𝐹 ∘ 2nd ))
1410, 12, 133eqtr4g 2790 1 (𝐴𝑉𝐴 / 𝑥wrecs(𝑅, 𝐷, 𝐹) = wrecs(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  csb 3865  ccom 5645  2nd c2nd 7970  frecscfrecs 8262  wrecscwrecs 8293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-iota 6467  df-fv 6522  df-ov 7393  df-frecs 8263  df-wrecs 8294
This theorem is referenced by:  csbrecsg  37323
  Copyright terms: Public domain W3C validator