MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snres0 Structured version   Visualization version   GIF version

Theorem snres0 6298
Description: Condition for restriction of a singleton to be empty. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
snres0.1 𝐵 ∈ V
Assertion
Ref Expression
snres0 (({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅ ↔ ¬ 𝐴𝐶)

Proof of Theorem snres0
StepHypRef Expression
1 relres 6003 . . 3 Rel ({⟨𝐴, 𝐵⟩} ↾ 𝐶)
2 reldm0 5918 . . 3 (Rel ({⟨𝐴, 𝐵⟩} ↾ 𝐶) → (({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅ ↔ dom ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅))
31, 2ax-mp 5 . 2 (({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅ ↔ dom ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅)
4 dmres 6010 . . . 4 dom ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = (𝐶 ∩ dom {⟨𝐴, 𝐵⟩})
5 snres0.1 . . . . . 6 𝐵 ∈ V
65dmsnop 6216 . . . . 5 dom {⟨𝐴, 𝐵⟩} = {𝐴}
76ineq2i 4197 . . . 4 (𝐶 ∩ dom {⟨𝐴, 𝐵⟩}) = (𝐶 ∩ {𝐴})
84, 7eqtri 2757 . . 3 dom ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = (𝐶 ∩ {𝐴})
98eqeq1i 2739 . 2 (dom ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅ ↔ (𝐶 ∩ {𝐴}) = ∅)
10 disjsn 4691 . 2 ((𝐶 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴𝐶)
113, 9, 103bitri 297 1 (({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅ ↔ ¬ 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1539  wcel 2107  Vcvv 3463  cin 3930  c0 4313  {csn 4606  cop 4612  dom cdm 5665  cres 5667  Rel wrel 5670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-xp 5671  df-rel 5672  df-dm 5675  df-res 5677
This theorem is referenced by:  noinfbnd2lem1  27712
  Copyright terms: Public domain W3C validator