| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snres0 | Structured version Visualization version GIF version | ||
| Description: Condition for restriction of a singleton to be empty. (Contributed by Scott Fenton, 9-Aug-2024.) |
| Ref | Expression |
|---|---|
| snres0.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| snres0 | ⊢ (({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅ ↔ ¬ 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 5976 | . . 3 ⊢ Rel ({〈𝐴, 𝐵〉} ↾ 𝐶) | |
| 2 | reldm0 5891 | . . 3 ⊢ (Rel ({〈𝐴, 𝐵〉} ↾ 𝐶) → (({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅ ↔ dom ({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅ ↔ dom ({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅) |
| 4 | dmres 5983 | . . . 4 ⊢ dom ({〈𝐴, 𝐵〉} ↾ 𝐶) = (𝐶 ∩ dom {〈𝐴, 𝐵〉}) | |
| 5 | snres0.1 | . . . . . 6 ⊢ 𝐵 ∈ V | |
| 6 | 5 | dmsnop 6189 | . . . . 5 ⊢ dom {〈𝐴, 𝐵〉} = {𝐴} |
| 7 | 6 | ineq2i 4180 | . . . 4 ⊢ (𝐶 ∩ dom {〈𝐴, 𝐵〉}) = (𝐶 ∩ {𝐴}) |
| 8 | 4, 7 | eqtri 2752 | . . 3 ⊢ dom ({〈𝐴, 𝐵〉} ↾ 𝐶) = (𝐶 ∩ {𝐴}) |
| 9 | 8 | eqeq1i 2734 | . 2 ⊢ (dom ({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅ ↔ (𝐶 ∩ {𝐴}) = ∅) |
| 10 | disjsn 4675 | . 2 ⊢ ((𝐶 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ 𝐶) | |
| 11 | 3, 9, 10 | 3bitri 297 | 1 ⊢ (({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅ ↔ ¬ 𝐴 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∩ cin 3913 ∅c0 4296 {csn 4589 〈cop 4595 dom cdm 5638 ↾ cres 5640 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-dm 5648 df-res 5650 |
| This theorem is referenced by: noinfbnd2lem1 27642 |
| Copyright terms: Public domain | W3C validator |