MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snres0 Structured version   Visualization version   GIF version

Theorem snres0 6307
Description: Condition for restriction of a singleton to be empty. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
snres0.1 𝐵 ∈ V
Assertion
Ref Expression
snres0 (({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅ ↔ ¬ 𝐴𝐶)

Proof of Theorem snres0
StepHypRef Expression
1 relres 6015 . . 3 Rel ({⟨𝐴, 𝐵⟩} ↾ 𝐶)
2 reldm0 5934 . . 3 (Rel ({⟨𝐴, 𝐵⟩} ↾ 𝐶) → (({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅ ↔ dom ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅))
31, 2ax-mp 5 . 2 (({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅ ↔ dom ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅)
4 dmres 6021 . . . 4 dom ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = (𝐶 ∩ dom {⟨𝐴, 𝐵⟩})
5 snres0.1 . . . . . 6 𝐵 ∈ V
65dmsnop 6225 . . . . 5 dom {⟨𝐴, 𝐵⟩} = {𝐴}
76ineq2i 4211 . . . 4 (𝐶 ∩ dom {⟨𝐴, 𝐵⟩}) = (𝐶 ∩ {𝐴})
84, 7eqtri 2756 . . 3 dom ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = (𝐶 ∩ {𝐴})
98eqeq1i 2733 . 2 (dom ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅ ↔ (𝐶 ∩ {𝐴}) = ∅)
10 disjsn 4720 . 2 ((𝐶 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴𝐶)
113, 9, 103bitri 296 1 (({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅ ↔ ¬ 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1533  wcel 2098  Vcvv 3473  cin 3948  c0 4326  {csn 4632  cop 4638  dom cdm 5682  cres 5684  Rel wrel 5687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5153  df-opab 5215  df-xp 5688  df-rel 5689  df-dm 5692  df-res 5694
This theorem is referenced by:  noinfbnd2lem1  27683
  Copyright terms: Public domain W3C validator