| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snres0 | Structured version Visualization version GIF version | ||
| Description: Condition for restriction of a singleton to be empty. (Contributed by Scott Fenton, 9-Aug-2024.) |
| Ref | Expression |
|---|---|
| snres0.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| snres0 | ⊢ (({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅ ↔ ¬ 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 5965 | . . 3 ⊢ Rel ({〈𝐴, 𝐵〉} ↾ 𝐶) | |
| 2 | reldm0 5881 | . . 3 ⊢ (Rel ({〈𝐴, 𝐵〉} ↾ 𝐶) → (({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅ ↔ dom ({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅ ↔ dom ({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅) |
| 4 | dmres 5972 | . . . 4 ⊢ dom ({〈𝐴, 𝐵〉} ↾ 𝐶) = (𝐶 ∩ dom {〈𝐴, 𝐵〉}) | |
| 5 | snres0.1 | . . . . . 6 ⊢ 𝐵 ∈ V | |
| 6 | 5 | dmsnop 6177 | . . . . 5 ⊢ dom {〈𝐴, 𝐵〉} = {𝐴} |
| 7 | 6 | ineq2i 4176 | . . . 4 ⊢ (𝐶 ∩ dom {〈𝐴, 𝐵〉}) = (𝐶 ∩ {𝐴}) |
| 8 | 4, 7 | eqtri 2752 | . . 3 ⊢ dom ({〈𝐴, 𝐵〉} ↾ 𝐶) = (𝐶 ∩ {𝐴}) |
| 9 | 8 | eqeq1i 2734 | . 2 ⊢ (dom ({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅ ↔ (𝐶 ∩ {𝐴}) = ∅) |
| 10 | disjsn 4671 | . 2 ⊢ ((𝐶 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ 𝐶) | |
| 11 | 3, 9, 10 | 3bitri 297 | 1 ⊢ (({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅ ↔ ¬ 𝐴 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∩ cin 3910 ∅c0 4292 {csn 4585 〈cop 4591 dom cdm 5631 ↾ cres 5633 Rel wrel 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-dm 5641 df-res 5643 |
| This theorem is referenced by: noinfbnd2lem1 27618 |
| Copyright terms: Public domain | W3C validator |