Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snres0 Structured version   Visualization version   GIF version

Theorem snres0 33724
Description: Condition for restriction of a singleton to be empty. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
snres0.1 𝐵 ∈ V
Assertion
Ref Expression
snres0 (({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅ ↔ ¬ 𝐴𝐶)

Proof of Theorem snres0
StepHypRef Expression
1 relres 5932 . . 3 Rel ({⟨𝐴, 𝐵⟩} ↾ 𝐶)
2 reldm0 5849 . . 3 (Rel ({⟨𝐴, 𝐵⟩} ↾ 𝐶) → (({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅ ↔ dom ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅))
31, 2ax-mp 5 . 2 (({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅ ↔ dom ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅)
4 dmres 5925 . . . 4 dom ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = (𝐶 ∩ dom {⟨𝐴, 𝐵⟩})
5 snres0.1 . . . . . 6 𝐵 ∈ V
65dmsnop 6134 . . . . 5 dom {⟨𝐴, 𝐵⟩} = {𝐴}
76ineq2i 4149 . . . 4 (𝐶 ∩ dom {⟨𝐴, 𝐵⟩}) = (𝐶 ∩ {𝐴})
84, 7eqtri 2764 . . 3 dom ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = (𝐶 ∩ {𝐴})
98eqeq1i 2741 . 2 (dom ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅ ↔ (𝐶 ∩ {𝐴}) = ∅)
10 disjsn 4651 . 2 ((𝐶 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴𝐶)
113, 9, 103bitri 297 1 (({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅ ↔ ¬ 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1539  wcel 2104  Vcvv 3437  cin 3891  c0 4262  {csn 4565  cop 4571  dom cdm 5600  cres 5602  Rel wrel 5605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-xp 5606  df-rel 5607  df-dm 5610  df-res 5612
This theorem is referenced by:  noinfbnd2lem1  33982
  Copyright terms: Public domain W3C validator