Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > snres0 | Structured version Visualization version GIF version |
Description: Condition for restriction of a singleton to be empty. (Contributed by Scott Fenton, 9-Aug-2024.) |
Ref | Expression |
---|---|
snres0.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
snres0 | ⊢ (({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅ ↔ ¬ 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 5932 | . . 3 ⊢ Rel ({〈𝐴, 𝐵〉} ↾ 𝐶) | |
2 | reldm0 5849 | . . 3 ⊢ (Rel ({〈𝐴, 𝐵〉} ↾ 𝐶) → (({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅ ↔ dom ({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅ ↔ dom ({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅) |
4 | dmres 5925 | . . . 4 ⊢ dom ({〈𝐴, 𝐵〉} ↾ 𝐶) = (𝐶 ∩ dom {〈𝐴, 𝐵〉}) | |
5 | snres0.1 | . . . . . 6 ⊢ 𝐵 ∈ V | |
6 | 5 | dmsnop 6134 | . . . . 5 ⊢ dom {〈𝐴, 𝐵〉} = {𝐴} |
7 | 6 | ineq2i 4149 | . . . 4 ⊢ (𝐶 ∩ dom {〈𝐴, 𝐵〉}) = (𝐶 ∩ {𝐴}) |
8 | 4, 7 | eqtri 2764 | . . 3 ⊢ dom ({〈𝐴, 𝐵〉} ↾ 𝐶) = (𝐶 ∩ {𝐴}) |
9 | 8 | eqeq1i 2741 | . 2 ⊢ (dom ({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅ ↔ (𝐶 ∩ {𝐴}) = ∅) |
10 | disjsn 4651 | . 2 ⊢ ((𝐶 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ 𝐶) | |
11 | 3, 9, 10 | 3bitri 297 | 1 ⊢ (({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅ ↔ ¬ 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ∈ wcel 2104 Vcvv 3437 ∩ cin 3891 ∅c0 4262 {csn 4565 〈cop 4571 dom cdm 5600 ↾ cres 5602 Rel wrel 5605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-xp 5606 df-rel 5607 df-dm 5610 df-res 5612 |
This theorem is referenced by: noinfbnd2lem1 33982 |
Copyright terms: Public domain | W3C validator |