| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snres0 | Structured version Visualization version GIF version | ||
| Description: Condition for restriction of a singleton to be empty. (Contributed by Scott Fenton, 9-Aug-2024.) |
| Ref | Expression |
|---|---|
| snres0.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| snres0 | ⊢ (({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅ ↔ ¬ 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 5949 | . . 3 ⊢ Rel ({〈𝐴, 𝐵〉} ↾ 𝐶) | |
| 2 | reldm0 5863 | . . 3 ⊢ (Rel ({〈𝐴, 𝐵〉} ↾ 𝐶) → (({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅ ↔ dom ({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅ ↔ dom ({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅) |
| 4 | dmres 5956 | . . . 4 ⊢ dom ({〈𝐴, 𝐵〉} ↾ 𝐶) = (𝐶 ∩ dom {〈𝐴, 𝐵〉}) | |
| 5 | snres0.1 | . . . . . 6 ⊢ 𝐵 ∈ V | |
| 6 | 5 | dmsnop 6158 | . . . . 5 ⊢ dom {〈𝐴, 𝐵〉} = {𝐴} |
| 7 | 6 | ineq2i 4162 | . . . 4 ⊢ (𝐶 ∩ dom {〈𝐴, 𝐵〉}) = (𝐶 ∩ {𝐴}) |
| 8 | 4, 7 | eqtri 2754 | . . 3 ⊢ dom ({〈𝐴, 𝐵〉} ↾ 𝐶) = (𝐶 ∩ {𝐴}) |
| 9 | 8 | eqeq1i 2736 | . 2 ⊢ (dom ({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅ ↔ (𝐶 ∩ {𝐴}) = ∅) |
| 10 | disjsn 4659 | . 2 ⊢ ((𝐶 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ 𝐶) | |
| 11 | 3, 9, 10 | 3bitri 297 | 1 ⊢ (({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅ ↔ ¬ 𝐴 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 ∅c0 4278 {csn 4571 〈cop 4577 dom cdm 5611 ↾ cres 5613 Rel wrel 5616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-xp 5617 df-rel 5618 df-dm 5621 df-res 5623 |
| This theorem is referenced by: noinfbnd2lem1 27664 |
| Copyright terms: Public domain | W3C validator |