MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snres0 Structured version   Visualization version   GIF version

Theorem snres0 6253
Description: Condition for restriction of a singleton to be empty. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
snres0.1 𝐵 ∈ V
Assertion
Ref Expression
snres0 (({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅ ↔ ¬ 𝐴𝐶)

Proof of Theorem snres0
StepHypRef Expression
1 relres 5961 . . 3 Rel ({⟨𝐴, 𝐵⟩} ↾ 𝐶)
2 reldm0 5874 . . 3 (Rel ({⟨𝐴, 𝐵⟩} ↾ 𝐶) → (({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅ ↔ dom ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅))
31, 2ax-mp 5 . 2 (({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅ ↔ dom ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅)
4 dmres 5968 . . . 4 dom ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = (𝐶 ∩ dom {⟨𝐴, 𝐵⟩})
5 snres0.1 . . . . . 6 𝐵 ∈ V
65dmsnop 6171 . . . . 5 dom {⟨𝐴, 𝐵⟩} = {𝐴}
76ineq2i 4166 . . . 4 (𝐶 ∩ dom {⟨𝐴, 𝐵⟩}) = (𝐶 ∩ {𝐴})
84, 7eqtri 2756 . . 3 dom ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = (𝐶 ∩ {𝐴})
98eqeq1i 2738 . 2 (dom ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅ ↔ (𝐶 ∩ {𝐴}) = ∅)
10 disjsn 4665 . 2 ((𝐶 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴𝐶)
113, 9, 103bitri 297 1 (({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅ ↔ ¬ 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1541  wcel 2113  Vcvv 3437  cin 3897  c0 4282  {csn 4577  cop 4583  dom cdm 5621  cres 5623  Rel wrel 5626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-rel 5628  df-dm 5631  df-res 5633
This theorem is referenced by:  noinfbnd2lem1  27689
  Copyright terms: Public domain W3C validator