Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snres0 Structured version   Visualization version   GIF version

Theorem snres0 33654
Description: Condition for restriction of a singleton to be empty. (Contributed by Scott Fenton, 9-Aug-2024.)
Hypothesis
Ref Expression
snres0.1 𝐵 ∈ V
Assertion
Ref Expression
snres0 (({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅ ↔ ¬ 𝐴𝐶)

Proof of Theorem snres0
StepHypRef Expression
1 relres 5917 . . 3 Rel ({⟨𝐴, 𝐵⟩} ↾ 𝐶)
2 reldm0 5834 . . 3 (Rel ({⟨𝐴, 𝐵⟩} ↾ 𝐶) → (({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅ ↔ dom ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅))
31, 2ax-mp 5 . 2 (({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅ ↔ dom ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅)
4 dmres 5910 . . . 4 dom ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = (𝐶 ∩ dom {⟨𝐴, 𝐵⟩})
5 snres0.1 . . . . . 6 𝐵 ∈ V
65dmsnop 6116 . . . . 5 dom {⟨𝐴, 𝐵⟩} = {𝐴}
76ineq2i 4148 . . . 4 (𝐶 ∩ dom {⟨𝐴, 𝐵⟩}) = (𝐶 ∩ {𝐴})
84, 7eqtri 2767 . . 3 dom ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = (𝐶 ∩ {𝐴})
98eqeq1i 2744 . 2 (dom ({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅ ↔ (𝐶 ∩ {𝐴}) = ∅)
10 disjsn 4652 . 2 ((𝐶 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴𝐶)
113, 9, 103bitri 296 1 (({⟨𝐴, 𝐵⟩} ↾ 𝐶) = ∅ ↔ ¬ 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1541  wcel 2109  Vcvv 3430  cin 3890  c0 4261  {csn 4566  cop 4572  dom cdm 5588  cres 5590  Rel wrel 5593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-xp 5594  df-rel 5595  df-dm 5598  df-res 5600
This theorem is referenced by:  noinfbnd2lem1  33912
  Copyright terms: Public domain W3C validator