Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > snres0 | Structured version Visualization version GIF version |
Description: Condition for restriction of a singleton to be empty. (Contributed by Scott Fenton, 9-Aug-2024.) |
Ref | Expression |
---|---|
snres0.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
snres0 | ⊢ (({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅ ↔ ¬ 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 5917 | . . 3 ⊢ Rel ({〈𝐴, 𝐵〉} ↾ 𝐶) | |
2 | reldm0 5834 | . . 3 ⊢ (Rel ({〈𝐴, 𝐵〉} ↾ 𝐶) → (({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅ ↔ dom ({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅ ↔ dom ({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅) |
4 | dmres 5910 | . . . 4 ⊢ dom ({〈𝐴, 𝐵〉} ↾ 𝐶) = (𝐶 ∩ dom {〈𝐴, 𝐵〉}) | |
5 | snres0.1 | . . . . . 6 ⊢ 𝐵 ∈ V | |
6 | 5 | dmsnop 6116 | . . . . 5 ⊢ dom {〈𝐴, 𝐵〉} = {𝐴} |
7 | 6 | ineq2i 4148 | . . . 4 ⊢ (𝐶 ∩ dom {〈𝐴, 𝐵〉}) = (𝐶 ∩ {𝐴}) |
8 | 4, 7 | eqtri 2767 | . . 3 ⊢ dom ({〈𝐴, 𝐵〉} ↾ 𝐶) = (𝐶 ∩ {𝐴}) |
9 | 8 | eqeq1i 2744 | . 2 ⊢ (dom ({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅ ↔ (𝐶 ∩ {𝐴}) = ∅) |
10 | disjsn 4652 | . 2 ⊢ ((𝐶 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ 𝐶) | |
11 | 3, 9, 10 | 3bitri 296 | 1 ⊢ (({〈𝐴, 𝐵〉} ↾ 𝐶) = ∅ ↔ ¬ 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ∩ cin 3890 ∅c0 4261 {csn 4566 〈cop 4572 dom cdm 5588 ↾ cres 5590 Rel wrel 5593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-xp 5594 df-rel 5595 df-dm 5598 df-res 5600 |
This theorem is referenced by: noinfbnd2lem1 33912 |
Copyright terms: Public domain | W3C validator |