HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvnbtwn2 Structured version   Visualization version   GIF version

Theorem cvnbtwn2 32268
Description: The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvnbtwn2 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵 → ((𝐴𝐶𝐶𝐵) → 𝐶 = 𝐵)))

Proof of Theorem cvnbtwn2
StepHypRef Expression
1 cvnbtwn 32267 . 2 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵 → ¬ (𝐴𝐶𝐶𝐵)))
2 iman 401 . . 3 (((𝐴𝐶𝐶𝐵) → 𝐶 = 𝐵) ↔ ¬ ((𝐴𝐶𝐶𝐵) ∧ ¬ 𝐶 = 𝐵))
3 anass 468 . . . . 5 (((𝐴𝐶𝐶𝐵) ∧ ¬ 𝐶 = 𝐵) ↔ (𝐴𝐶 ∧ (𝐶𝐵 ∧ ¬ 𝐶 = 𝐵)))
4 dfpss2 4063 . . . . . 6 (𝐶𝐵 ↔ (𝐶𝐵 ∧ ¬ 𝐶 = 𝐵))
54anbi2i 623 . . . . 5 ((𝐴𝐶𝐶𝐵) ↔ (𝐴𝐶 ∧ (𝐶𝐵 ∧ ¬ 𝐶 = 𝐵)))
63, 5bitr4i 278 . . . 4 (((𝐴𝐶𝐶𝐵) ∧ ¬ 𝐶 = 𝐵) ↔ (𝐴𝐶𝐶𝐵))
76notbii 320 . . 3 (¬ ((𝐴𝐶𝐶𝐵) ∧ ¬ 𝐶 = 𝐵) ↔ ¬ (𝐴𝐶𝐶𝐵))
82, 7bitr2i 276 . 2 (¬ (𝐴𝐶𝐶𝐵) ↔ ((𝐴𝐶𝐶𝐵) → 𝐶 = 𝐵))
91, 8imbitrdi 251 1 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵 → ((𝐴𝐶𝐶𝐵) → 𝐶 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wss 3926  wpss 3927   class class class wbr 5119   C cch 30910   ccv 30945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-cv 32260
This theorem is referenced by:  cvati  32347  cvexchlem  32349  atexch  32362
  Copyright terms: Public domain W3C validator