HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvnbtwn2 Structured version   Visualization version   GIF version

Theorem cvnbtwn2 30550
Description: The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvnbtwn2 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵 → ((𝐴𝐶𝐶𝐵) → 𝐶 = 𝐵)))

Proof of Theorem cvnbtwn2
StepHypRef Expression
1 cvnbtwn 30549 . 2 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵 → ¬ (𝐴𝐶𝐶𝐵)))
2 iman 401 . . 3 (((𝐴𝐶𝐶𝐵) → 𝐶 = 𝐵) ↔ ¬ ((𝐴𝐶𝐶𝐵) ∧ ¬ 𝐶 = 𝐵))
3 anass 468 . . . . 5 (((𝐴𝐶𝐶𝐵) ∧ ¬ 𝐶 = 𝐵) ↔ (𝐴𝐶 ∧ (𝐶𝐵 ∧ ¬ 𝐶 = 𝐵)))
4 dfpss2 4016 . . . . . 6 (𝐶𝐵 ↔ (𝐶𝐵 ∧ ¬ 𝐶 = 𝐵))
54anbi2i 622 . . . . 5 ((𝐴𝐶𝐶𝐵) ↔ (𝐴𝐶 ∧ (𝐶𝐵 ∧ ¬ 𝐶 = 𝐵)))
63, 5bitr4i 277 . . . 4 (((𝐴𝐶𝐶𝐵) ∧ ¬ 𝐶 = 𝐵) ↔ (𝐴𝐶𝐶𝐵))
76notbii 319 . . 3 (¬ ((𝐴𝐶𝐶𝐵) ∧ ¬ 𝐶 = 𝐵) ↔ ¬ (𝐴𝐶𝐶𝐵))
82, 7bitr2i 275 . 2 (¬ (𝐴𝐶𝐶𝐵) ↔ ((𝐴𝐶𝐶𝐵) → 𝐶 = 𝐵))
91, 8syl6ib 250 1 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵 → ((𝐴𝐶𝐶𝐵) → 𝐶 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wss 3883  wpss 3884   class class class wbr 5070   C cch 29192   ccv 29227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-cv 30542
This theorem is referenced by:  cvati  30629  cvexchlem  30631  atexch  30644
  Copyright terms: Public domain W3C validator