![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > cvnbtwn2 | Structured version Visualization version GIF version |
Description: The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cvnbtwn2 | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊆ 𝐵) → 𝐶 = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvnbtwn 32048 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵))) | |
2 | iman 401 | . . 3 ⊢ (((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊆ 𝐵) → 𝐶 = 𝐵) ↔ ¬ ((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊆ 𝐵) ∧ ¬ 𝐶 = 𝐵)) | |
3 | anass 468 | . . . . 5 ⊢ (((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊆ 𝐵) ∧ ¬ 𝐶 = 𝐵) ↔ (𝐴 ⊊ 𝐶 ∧ (𝐶 ⊆ 𝐵 ∧ ¬ 𝐶 = 𝐵))) | |
4 | dfpss2 4080 | . . . . . 6 ⊢ (𝐶 ⊊ 𝐵 ↔ (𝐶 ⊆ 𝐵 ∧ ¬ 𝐶 = 𝐵)) | |
5 | 4 | anbi2i 622 | . . . . 5 ⊢ ((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵) ↔ (𝐴 ⊊ 𝐶 ∧ (𝐶 ⊆ 𝐵 ∧ ¬ 𝐶 = 𝐵))) |
6 | 3, 5 | bitr4i 278 | . . . 4 ⊢ (((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊆ 𝐵) ∧ ¬ 𝐶 = 𝐵) ↔ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵)) |
7 | 6 | notbii 320 | . . 3 ⊢ (¬ ((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊆ 𝐵) ∧ ¬ 𝐶 = 𝐵) ↔ ¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵)) |
8 | 2, 7 | bitr2i 276 | . 2 ⊢ (¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵) ↔ ((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊆ 𝐵) → 𝐶 = 𝐵)) |
9 | 1, 8 | imbitrdi 250 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊆ 𝐵) → 𝐶 = 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ⊆ wss 3943 ⊊ wpss 3944 class class class wbr 5141 Cℋ cch 30691 ⋖ℋ ccv 30726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-cv 32041 |
This theorem is referenced by: cvati 32128 cvexchlem 32130 atexch 32143 |
Copyright terms: Public domain | W3C validator |