HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvnbtwn2 Structured version   Visualization version   GIF version

Theorem cvnbtwn2 29848
Description: The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvnbtwn2 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵 → ((𝐴𝐶𝐶𝐵) → 𝐶 = 𝐵)))

Proof of Theorem cvnbtwn2
StepHypRef Expression
1 cvnbtwn 29847 . 2 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵 → ¬ (𝐴𝐶𝐶𝐵)))
2 iman 393 . . 3 (((𝐴𝐶𝐶𝐵) → 𝐶 = 𝐵) ↔ ¬ ((𝐴𝐶𝐶𝐵) ∧ ¬ 𝐶 = 𝐵))
3 anass 461 . . . . 5 (((𝐴𝐶𝐶𝐵) ∧ ¬ 𝐶 = 𝐵) ↔ (𝐴𝐶 ∧ (𝐶𝐵 ∧ ¬ 𝐶 = 𝐵)))
4 dfpss2 3954 . . . . . 6 (𝐶𝐵 ↔ (𝐶𝐵 ∧ ¬ 𝐶 = 𝐵))
54anbi2i 613 . . . . 5 ((𝐴𝐶𝐶𝐵) ↔ (𝐴𝐶 ∧ (𝐶𝐵 ∧ ¬ 𝐶 = 𝐵)))
63, 5bitr4i 270 . . . 4 (((𝐴𝐶𝐶𝐵) ∧ ¬ 𝐶 = 𝐵) ↔ (𝐴𝐶𝐶𝐵))
76notbii 312 . . 3 (¬ ((𝐴𝐶𝐶𝐵) ∧ ¬ 𝐶 = 𝐵) ↔ ¬ (𝐴𝐶𝐶𝐵))
82, 7bitr2i 268 . 2 (¬ (𝐴𝐶𝐶𝐵) ↔ ((𝐴𝐶𝐶𝐵) → 𝐶 = 𝐵))
91, 8syl6ib 243 1 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵 → ((𝐴𝐶𝐶𝐵) → 𝐶 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2050  wss 3831  wpss 3832   class class class wbr 4930   C cch 28488   ccv 28523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5061  ax-nul 5068  ax-pr 5187
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-rex 3094  df-rab 3097  df-v 3417  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-sn 4443  df-pr 4445  df-op 4449  df-br 4931  df-opab 4993  df-cv 29840
This theorem is referenced by:  cvati  29927  cvexchlem  29929  atexch  29942
  Copyright terms: Public domain W3C validator