HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvnbtwn2 Structured version   Visualization version   GIF version

Theorem cvnbtwn2 31527
Description: The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvnbtwn2 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵 → ((𝐴𝐶𝐶𝐵) → 𝐶 = 𝐵)))

Proof of Theorem cvnbtwn2
StepHypRef Expression
1 cvnbtwn 31526 . 2 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵 → ¬ (𝐴𝐶𝐶𝐵)))
2 iman 402 . . 3 (((𝐴𝐶𝐶𝐵) → 𝐶 = 𝐵) ↔ ¬ ((𝐴𝐶𝐶𝐵) ∧ ¬ 𝐶 = 𝐵))
3 anass 469 . . . . 5 (((𝐴𝐶𝐶𝐵) ∧ ¬ 𝐶 = 𝐵) ↔ (𝐴𝐶 ∧ (𝐶𝐵 ∧ ¬ 𝐶 = 𝐵)))
4 dfpss2 4084 . . . . . 6 (𝐶𝐵 ↔ (𝐶𝐵 ∧ ¬ 𝐶 = 𝐵))
54anbi2i 623 . . . . 5 ((𝐴𝐶𝐶𝐵) ↔ (𝐴𝐶 ∧ (𝐶𝐵 ∧ ¬ 𝐶 = 𝐵)))
63, 5bitr4i 277 . . . 4 (((𝐴𝐶𝐶𝐵) ∧ ¬ 𝐶 = 𝐵) ↔ (𝐴𝐶𝐶𝐵))
76notbii 319 . . 3 (¬ ((𝐴𝐶𝐶𝐵) ∧ ¬ 𝐶 = 𝐵) ↔ ¬ (𝐴𝐶𝐶𝐵))
82, 7bitr2i 275 . 2 (¬ (𝐴𝐶𝐶𝐵) ↔ ((𝐴𝐶𝐶𝐵) → 𝐶 = 𝐵))
91, 8imbitrdi 250 1 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵 → ((𝐴𝐶𝐶𝐵) → 𝐶 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wss 3947  wpss 3948   class class class wbr 5147   C cch 30169   ccv 30204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-cv 31519
This theorem is referenced by:  cvati  31606  cvexchlem  31608  atexch  31621
  Copyright terms: Public domain W3C validator