![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > cvnbtwn2 | Structured version Visualization version GIF version |
Description: The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cvnbtwn2 | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊆ 𝐵) → 𝐶 = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvnbtwn 31526 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵))) | |
2 | iman 402 | . . 3 ⊢ (((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊆ 𝐵) → 𝐶 = 𝐵) ↔ ¬ ((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊆ 𝐵) ∧ ¬ 𝐶 = 𝐵)) | |
3 | anass 469 | . . . . 5 ⊢ (((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊆ 𝐵) ∧ ¬ 𝐶 = 𝐵) ↔ (𝐴 ⊊ 𝐶 ∧ (𝐶 ⊆ 𝐵 ∧ ¬ 𝐶 = 𝐵))) | |
4 | dfpss2 4084 | . . . . . 6 ⊢ (𝐶 ⊊ 𝐵 ↔ (𝐶 ⊆ 𝐵 ∧ ¬ 𝐶 = 𝐵)) | |
5 | 4 | anbi2i 623 | . . . . 5 ⊢ ((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵) ↔ (𝐴 ⊊ 𝐶 ∧ (𝐶 ⊆ 𝐵 ∧ ¬ 𝐶 = 𝐵))) |
6 | 3, 5 | bitr4i 277 | . . . 4 ⊢ (((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊆ 𝐵) ∧ ¬ 𝐶 = 𝐵) ↔ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵)) |
7 | 6 | notbii 319 | . . 3 ⊢ (¬ ((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊆ 𝐵) ∧ ¬ 𝐶 = 𝐵) ↔ ¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵)) |
8 | 2, 7 | bitr2i 275 | . 2 ⊢ (¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵) ↔ ((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊆ 𝐵) → 𝐶 = 𝐵)) |
9 | 1, 8 | imbitrdi 250 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊆ 𝐵) → 𝐶 = 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ⊆ wss 3947 ⊊ wpss 3948 class class class wbr 5147 Cℋ cch 30169 ⋖ℋ ccv 30204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-cv 31519 |
This theorem is referenced by: cvati 31606 cvexchlem 31608 atexch 31621 |
Copyright terms: Public domain | W3C validator |