| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > cvnbtwn2 | Structured version Visualization version GIF version | ||
| Description: The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cvnbtwn2 | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊆ 𝐵) → 𝐶 = 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvnbtwn 32188 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵))) | |
| 2 | iman 401 | . . 3 ⊢ (((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊆ 𝐵) → 𝐶 = 𝐵) ↔ ¬ ((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊆ 𝐵) ∧ ¬ 𝐶 = 𝐵)) | |
| 3 | anass 468 | . . . . 5 ⊢ (((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊆ 𝐵) ∧ ¬ 𝐶 = 𝐵) ↔ (𝐴 ⊊ 𝐶 ∧ (𝐶 ⊆ 𝐵 ∧ ¬ 𝐶 = 𝐵))) | |
| 4 | dfpss2 4047 | . . . . . 6 ⊢ (𝐶 ⊊ 𝐵 ↔ (𝐶 ⊆ 𝐵 ∧ ¬ 𝐶 = 𝐵)) | |
| 5 | 4 | anbi2i 623 | . . . . 5 ⊢ ((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵) ↔ (𝐴 ⊊ 𝐶 ∧ (𝐶 ⊆ 𝐵 ∧ ¬ 𝐶 = 𝐵))) |
| 6 | 3, 5 | bitr4i 278 | . . . 4 ⊢ (((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊆ 𝐵) ∧ ¬ 𝐶 = 𝐵) ↔ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵)) |
| 7 | 6 | notbii 320 | . . 3 ⊢ (¬ ((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊆ 𝐵) ∧ ¬ 𝐶 = 𝐵) ↔ ¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵)) |
| 8 | 2, 7 | bitr2i 276 | . 2 ⊢ (¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵) ↔ ((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊆ 𝐵) → 𝐶 = 𝐵)) |
| 9 | 1, 8 | imbitrdi 251 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊆ 𝐵) → 𝐶 = 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 ⊊ wpss 3912 class class class wbr 5102 Cℋ cch 30831 ⋖ℋ ccv 30866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-cv 32181 |
| This theorem is referenced by: cvati 32268 cvexchlem 32270 atexch 32283 |
| Copyright terms: Public domain | W3C validator |