![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > cvexchlem | Structured version Visualization version GIF version |
Description: Lemma for cvexchi 32392. (Contributed by NM, 10-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chpssat.1 | ⊢ 𝐴 ∈ Cℋ |
chpssat.2 | ⊢ 𝐵 ∈ Cℋ |
Ref | Expression |
---|---|
cvexchlem | ⊢ ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 → 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chpssat.1 | . . . . 5 ⊢ 𝐴 ∈ Cℋ | |
2 | chpssat.2 | . . . . 5 ⊢ 𝐵 ∈ Cℋ | |
3 | 1, 2 | chincli 31483 | . . . 4 ⊢ (𝐴 ∩ 𝐵) ∈ Cℋ |
4 | cvpss 32308 | . . . 4 ⊢ (((𝐴 ∩ 𝐵) ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 → (𝐴 ∩ 𝐵) ⊊ 𝐵)) | |
5 | 3, 2, 4 | mp2an 691 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 → (𝐴 ∩ 𝐵) ⊊ 𝐵) |
6 | 3, 2 | chpssati 32386 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ⊊ 𝐵 → ∃𝑥 ∈ HAtoms (𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ (𝐴 ∩ 𝐵))) |
7 | 5, 6 | syl 17 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 → ∃𝑥 ∈ HAtoms (𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ (𝐴 ∩ 𝐵))) |
8 | ssin 4254 | . . . . . . . . . . 11 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐵) ↔ 𝑥 ⊆ (𝐴 ∩ 𝐵)) | |
9 | ancom 460 | . . . . . . . . . . 11 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐵) ↔ (𝑥 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴)) | |
10 | 8, 9 | bitr3i 277 | . . . . . . . . . 10 ⊢ (𝑥 ⊆ (𝐴 ∩ 𝐵) ↔ (𝑥 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴)) |
11 | 10 | baibr 536 | . . . . . . . . 9 ⊢ (𝑥 ⊆ 𝐵 → (𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ (𝐴 ∩ 𝐵))) |
12 | 11 | notbid 318 | . . . . . . . 8 ⊢ (𝑥 ⊆ 𝐵 → (¬ 𝑥 ⊆ 𝐴 ↔ ¬ 𝑥 ⊆ (𝐴 ∩ 𝐵))) |
13 | 12 | biimpar 477 | . . . . . . 7 ⊢ ((𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ (𝐴 ∩ 𝐵)) → ¬ 𝑥 ⊆ 𝐴) |
14 | chcv1 32378 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Cℋ ∧ 𝑥 ∈ HAtoms) → (¬ 𝑥 ⊆ 𝐴 ↔ 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝑥))) | |
15 | 1, 14 | mpan 689 | . . . . . . . 8 ⊢ (𝑥 ∈ HAtoms → (¬ 𝑥 ⊆ 𝐴 ↔ 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝑥))) |
16 | 15 | biimpa 476 | . . . . . . 7 ⊢ ((𝑥 ∈ HAtoms ∧ ¬ 𝑥 ⊆ 𝐴) → 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝑥)) |
17 | 13, 16 | sylan2 592 | . . . . . 6 ⊢ ((𝑥 ∈ HAtoms ∧ (𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ (𝐴 ∩ 𝐵))) → 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝑥)) |
18 | 17 | adantrr 716 | . . . . 5 ⊢ ((𝑥 ∈ HAtoms ∧ ((𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ (𝐴 ∩ 𝐵)) ∧ (𝐴 ∩ 𝐵) ⋖ℋ 𝐵)) → 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝑥)) |
19 | atelch 32367 | . . . . . 6 ⊢ (𝑥 ∈ HAtoms → 𝑥 ∈ Cℋ ) | |
20 | chjass 31556 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ Cℋ ∧ (𝐴 ∩ 𝐵) ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → ((𝐴 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝑥) = (𝐴 ∨ℋ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥))) | |
21 | 1, 3, 20 | mp3an12 1451 | . . . . . . . . 9 ⊢ (𝑥 ∈ Cℋ → ((𝐴 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝑥) = (𝐴 ∨ℋ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥))) |
22 | 1, 2 | chabs1i 31541 | . . . . . . . . . 10 ⊢ (𝐴 ∨ℋ (𝐴 ∩ 𝐵)) = 𝐴 |
23 | 22 | oveq1i 7455 | . . . . . . . . 9 ⊢ ((𝐴 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝑥) = (𝐴 ∨ℋ 𝑥) |
24 | 21, 23 | eqtr3di 2789 | . . . . . . . 8 ⊢ (𝑥 ∈ Cℋ → (𝐴 ∨ℋ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥)) = (𝐴 ∨ℋ 𝑥)) |
25 | 24 | adantr 480 | . . . . . . 7 ⊢ ((𝑥 ∈ Cℋ ∧ ((𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ (𝐴 ∩ 𝐵)) ∧ (𝐴 ∩ 𝐵) ⋖ℋ 𝐵)) → (𝐴 ∨ℋ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥)) = (𝐴 ∨ℋ 𝑥)) |
26 | ancom 460 | . . . . . . . . . . 11 ⊢ ((𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ (𝐴 ∩ 𝐵)) ↔ (¬ 𝑥 ⊆ (𝐴 ∩ 𝐵) ∧ 𝑥 ⊆ 𝐵)) | |
27 | chnle 31537 | . . . . . . . . . . . . 13 ⊢ (((𝐴 ∩ 𝐵) ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → (¬ 𝑥 ⊆ (𝐴 ∩ 𝐵) ↔ (𝐴 ∩ 𝐵) ⊊ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥))) | |
28 | 3, 27 | mpan 689 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ Cℋ → (¬ 𝑥 ⊆ (𝐴 ∩ 𝐵) ↔ (𝐴 ∩ 𝐵) ⊊ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥))) |
29 | inss2 4253 | . . . . . . . . . . . . . 14 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
30 | 29 | biantrur 530 | . . . . . . . . . . . . 13 ⊢ (𝑥 ⊆ 𝐵 ↔ ((𝐴 ∩ 𝐵) ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐵)) |
31 | chlub 31532 | . . . . . . . . . . . . . 14 ⊢ (((𝐴 ∩ 𝐵) ∈ Cℋ ∧ 𝑥 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (((𝐴 ∩ 𝐵) ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐵) ↔ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ⊆ 𝐵)) | |
32 | 3, 2, 31 | mp3an13 1452 | . . . . . . . . . . . . 13 ⊢ (𝑥 ∈ Cℋ → (((𝐴 ∩ 𝐵) ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐵) ↔ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ⊆ 𝐵)) |
33 | 30, 32 | bitrid 283 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ Cℋ → (𝑥 ⊆ 𝐵 ↔ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ⊆ 𝐵)) |
34 | 28, 33 | anbi12d 631 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ Cℋ → ((¬ 𝑥 ⊆ (𝐴 ∩ 𝐵) ∧ 𝑥 ⊆ 𝐵) ↔ ((𝐴 ∩ 𝐵) ⊊ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ∧ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ⊆ 𝐵))) |
35 | 26, 34 | bitrid 283 | . . . . . . . . . 10 ⊢ (𝑥 ∈ Cℋ → ((𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ (𝐴 ∩ 𝐵)) ↔ ((𝐴 ∩ 𝐵) ⊊ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ∧ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ⊆ 𝐵))) |
36 | chjcl 31380 | . . . . . . . . . . . . 13 ⊢ (((𝐴 ∩ 𝐵) ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ∈ Cℋ ) | |
37 | 3, 36 | mpan 689 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ Cℋ → ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ∈ Cℋ ) |
38 | cvnbtwn2 32310 | . . . . . . . . . . . . 13 ⊢ (((𝐴 ∩ 𝐵) ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ∈ Cℋ ) → ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 → (((𝐴 ∩ 𝐵) ⊊ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ∧ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ⊆ 𝐵) → ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) = 𝐵))) | |
39 | 3, 2, 38 | mp3an12 1451 | . . . . . . . . . . . 12 ⊢ (((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ∈ Cℋ → ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 → (((𝐴 ∩ 𝐵) ⊊ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ∧ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ⊆ 𝐵) → ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) = 𝐵))) |
40 | 37, 39 | syl 17 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ Cℋ → ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 → (((𝐴 ∩ 𝐵) ⊊ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ∧ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ⊆ 𝐵) → ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) = 𝐵))) |
41 | 40 | com23 86 | . . . . . . . . . 10 ⊢ (𝑥 ∈ Cℋ → (((𝐴 ∩ 𝐵) ⊊ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ∧ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ⊆ 𝐵) → ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 → ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) = 𝐵))) |
42 | 35, 41 | sylbid 240 | . . . . . . . . 9 ⊢ (𝑥 ∈ Cℋ → ((𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ (𝐴 ∩ 𝐵)) → ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 → ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) = 𝐵))) |
43 | 42 | imp32 418 | . . . . . . . 8 ⊢ ((𝑥 ∈ Cℋ ∧ ((𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ (𝐴 ∩ 𝐵)) ∧ (𝐴 ∩ 𝐵) ⋖ℋ 𝐵)) → ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) = 𝐵) |
44 | 43 | oveq2d 7461 | . . . . . . 7 ⊢ ((𝑥 ∈ Cℋ ∧ ((𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ (𝐴 ∩ 𝐵)) ∧ (𝐴 ∩ 𝐵) ⋖ℋ 𝐵)) → (𝐴 ∨ℋ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥)) = (𝐴 ∨ℋ 𝐵)) |
45 | 25, 44 | eqtr3d 2776 | . . . . . 6 ⊢ ((𝑥 ∈ Cℋ ∧ ((𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ (𝐴 ∩ 𝐵)) ∧ (𝐴 ∩ 𝐵) ⋖ℋ 𝐵)) → (𝐴 ∨ℋ 𝑥) = (𝐴 ∨ℋ 𝐵)) |
46 | 19, 45 | sylan 579 | . . . . 5 ⊢ ((𝑥 ∈ HAtoms ∧ ((𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ (𝐴 ∩ 𝐵)) ∧ (𝐴 ∩ 𝐵) ⋖ℋ 𝐵)) → (𝐴 ∨ℋ 𝑥) = (𝐴 ∨ℋ 𝐵)) |
47 | 18, 46 | breqtrd 5195 | . . . 4 ⊢ ((𝑥 ∈ HAtoms ∧ ((𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ (𝐴 ∩ 𝐵)) ∧ (𝐴 ∩ 𝐵) ⋖ℋ 𝐵)) → 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐵)) |
48 | 47 | exp32 420 | . . 3 ⊢ (𝑥 ∈ HAtoms → ((𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ (𝐴 ∩ 𝐵)) → ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 → 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐵)))) |
49 | 48 | rexlimiv 3150 | . 2 ⊢ (∃𝑥 ∈ HAtoms (𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ (𝐴 ∩ 𝐵)) → ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 → 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐵))) |
50 | 7, 49 | mpcom 38 | 1 ⊢ ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 → 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2103 ∃wrex 3072 ∩ cin 3969 ⊆ wss 3970 ⊊ wpss 3971 class class class wbr 5169 (class class class)co 7445 Cℋ cch 30952 ∨ℋ chj 30956 ⋖ℋ ccv 30987 HAtomscat 30988 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-rep 5306 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 ax-inf2 9706 ax-cc 10500 ax-cnex 11236 ax-resscn 11237 ax-1cn 11238 ax-icn 11239 ax-addcl 11240 ax-addrcl 11241 ax-mulcl 11242 ax-mulrcl 11243 ax-mulcom 11244 ax-addass 11245 ax-mulass 11246 ax-distr 11247 ax-i2m1 11248 ax-1ne0 11249 ax-1rid 11250 ax-rnegex 11251 ax-rrecex 11252 ax-cnre 11253 ax-pre-lttri 11254 ax-pre-lttrn 11255 ax-pre-ltadd 11256 ax-pre-mulgt0 11257 ax-pre-sup 11258 ax-addf 11259 ax-mulf 11260 ax-hilex 31022 ax-hfvadd 31023 ax-hvcom 31024 ax-hvass 31025 ax-hv0cl 31026 ax-hvaddid 31027 ax-hfvmul 31028 ax-hvmulid 31029 ax-hvmulass 31030 ax-hvdistr1 31031 ax-hvdistr2 31032 ax-hvmul0 31033 ax-hfi 31102 ax-his1 31105 ax-his2 31106 ax-his3 31107 ax-his4 31108 ax-hcompl 31225 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3383 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-pss 3990 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4973 df-iun 5021 df-iin 5022 df-br 5170 df-opab 5232 df-mpt 5253 df-tr 5287 df-id 5597 df-eprel 5603 df-po 5611 df-so 5612 df-fr 5654 df-se 5655 df-we 5656 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-pred 6331 df-ord 6397 df-on 6398 df-lim 6399 df-suc 6400 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-isom 6581 df-riota 7401 df-ov 7448 df-oprab 7449 df-mpo 7450 df-of 7710 df-om 7900 df-1st 8026 df-2nd 8027 df-supp 8198 df-frecs 8318 df-wrecs 8349 df-recs 8423 df-rdg 8462 df-1o 8518 df-2o 8519 df-oadd 8522 df-omul 8523 df-er 8759 df-map 8882 df-pm 8883 df-ixp 8952 df-en 9000 df-dom 9001 df-sdom 9002 df-fin 9003 df-fsupp 9428 df-fi 9476 df-sup 9507 df-inf 9508 df-oi 9575 df-card 10004 df-acn 10007 df-pnf 11322 df-mnf 11323 df-xr 11324 df-ltxr 11325 df-le 11326 df-sub 11518 df-neg 11519 df-div 11944 df-nn 12290 df-2 12352 df-3 12353 df-4 12354 df-5 12355 df-6 12356 df-7 12357 df-8 12358 df-9 12359 df-n0 12550 df-z 12636 df-dec 12755 df-uz 12900 df-q 13010 df-rp 13054 df-xneg 13171 df-xadd 13172 df-xmul 13173 df-ioo 13407 df-ico 13409 df-icc 13410 df-fz 13564 df-fzo 13708 df-fl 13839 df-seq 14049 df-exp 14109 df-hash 14376 df-cj 15144 df-re 15145 df-im 15146 df-sqrt 15280 df-abs 15281 df-clim 15530 df-rlim 15531 df-sum 15731 df-struct 17189 df-sets 17206 df-slot 17224 df-ndx 17236 df-base 17254 df-ress 17283 df-plusg 17319 df-mulr 17320 df-starv 17321 df-sca 17322 df-vsca 17323 df-ip 17324 df-tset 17325 df-ple 17326 df-ds 17328 df-unif 17329 df-hom 17330 df-cco 17331 df-rest 17477 df-topn 17478 df-0g 17496 df-gsum 17497 df-topgen 17498 df-pt 17499 df-prds 17502 df-xrs 17557 df-qtop 17562 df-imas 17563 df-xps 17565 df-mre 17639 df-mrc 17640 df-acs 17642 df-mgm 18673 df-sgrp 18752 df-mnd 18768 df-submnd 18814 df-mulg 19103 df-cntz 19352 df-cmn 19819 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-fbas 21379 df-fg 21380 df-cnfld 21383 df-top 22914 df-topon 22931 df-topsp 22953 df-bases 22967 df-cld 23041 df-ntr 23042 df-cls 23043 df-nei 23120 df-cn 23249 df-cnp 23250 df-lm 23251 df-haus 23337 df-tx 23584 df-hmeo 23777 df-fil 23868 df-fm 23960 df-flim 23961 df-flf 23962 df-xms 24344 df-ms 24345 df-tms 24346 df-cfil 25301 df-cau 25302 df-cmet 25303 df-grpo 30516 df-gid 30517 df-ginv 30518 df-gdiv 30519 df-ablo 30568 df-vc 30582 df-nv 30615 df-va 30618 df-ba 30619 df-sm 30620 df-0v 30621 df-vs 30622 df-nmcv 30623 df-ims 30624 df-dip 30724 df-ssp 30745 df-ph 30836 df-cbn 30886 df-hnorm 30991 df-hba 30992 df-hvsub 30994 df-hlim 30995 df-hcau 30996 df-sh 31230 df-ch 31244 df-oc 31275 df-ch0 31276 df-shs 31331 df-span 31332 df-chj 31333 df-chsup 31334 df-pjh 31418 df-cv 32302 df-at 32361 |
This theorem is referenced by: cvexchi 32392 |
Copyright terms: Public domain | W3C validator |