Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > cvexchlem | Structured version Visualization version GIF version |
Description: Lemma for cvexchi 30304. (Contributed by NM, 10-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chpssat.1 | ⊢ 𝐴 ∈ Cℋ |
chpssat.2 | ⊢ 𝐵 ∈ Cℋ |
Ref | Expression |
---|---|
cvexchlem | ⊢ ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 → 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chpssat.1 | . . . . 5 ⊢ 𝐴 ∈ Cℋ | |
2 | chpssat.2 | . . . . 5 ⊢ 𝐵 ∈ Cℋ | |
3 | 1, 2 | chincli 29395 | . . . 4 ⊢ (𝐴 ∩ 𝐵) ∈ Cℋ |
4 | cvpss 30220 | . . . 4 ⊢ (((𝐴 ∩ 𝐵) ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 → (𝐴 ∩ 𝐵) ⊊ 𝐵)) | |
5 | 3, 2, 4 | mp2an 692 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 → (𝐴 ∩ 𝐵) ⊊ 𝐵) |
6 | 3, 2 | chpssati 30298 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ⊊ 𝐵 → ∃𝑥 ∈ HAtoms (𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ (𝐴 ∩ 𝐵))) |
7 | 5, 6 | syl 17 | . 2 ⊢ ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 → ∃𝑥 ∈ HAtoms (𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ (𝐴 ∩ 𝐵))) |
8 | ssin 4122 | . . . . . . . . . . 11 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐵) ↔ 𝑥 ⊆ (𝐴 ∩ 𝐵)) | |
9 | ancom 464 | . . . . . . . . . . 11 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐵) ↔ (𝑥 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴)) | |
10 | 8, 9 | bitr3i 280 | . . . . . . . . . 10 ⊢ (𝑥 ⊆ (𝐴 ∩ 𝐵) ↔ (𝑥 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐴)) |
11 | 10 | baibr 540 | . . . . . . . . 9 ⊢ (𝑥 ⊆ 𝐵 → (𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ (𝐴 ∩ 𝐵))) |
12 | 11 | notbid 321 | . . . . . . . 8 ⊢ (𝑥 ⊆ 𝐵 → (¬ 𝑥 ⊆ 𝐴 ↔ ¬ 𝑥 ⊆ (𝐴 ∩ 𝐵))) |
13 | 12 | biimpar 481 | . . . . . . 7 ⊢ ((𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ (𝐴 ∩ 𝐵)) → ¬ 𝑥 ⊆ 𝐴) |
14 | chcv1 30290 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Cℋ ∧ 𝑥 ∈ HAtoms) → (¬ 𝑥 ⊆ 𝐴 ↔ 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝑥))) | |
15 | 1, 14 | mpan 690 | . . . . . . . 8 ⊢ (𝑥 ∈ HAtoms → (¬ 𝑥 ⊆ 𝐴 ↔ 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝑥))) |
16 | 15 | biimpa 480 | . . . . . . 7 ⊢ ((𝑥 ∈ HAtoms ∧ ¬ 𝑥 ⊆ 𝐴) → 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝑥)) |
17 | 13, 16 | sylan2 596 | . . . . . 6 ⊢ ((𝑥 ∈ HAtoms ∧ (𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ (𝐴 ∩ 𝐵))) → 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝑥)) |
18 | 17 | adantrr 717 | . . . . 5 ⊢ ((𝑥 ∈ HAtoms ∧ ((𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ (𝐴 ∩ 𝐵)) ∧ (𝐴 ∩ 𝐵) ⋖ℋ 𝐵)) → 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝑥)) |
19 | atelch 30279 | . . . . . 6 ⊢ (𝑥 ∈ HAtoms → 𝑥 ∈ Cℋ ) | |
20 | 1, 2 | chabs1i 29453 | . . . . . . . . . 10 ⊢ (𝐴 ∨ℋ (𝐴 ∩ 𝐵)) = 𝐴 |
21 | 20 | oveq1i 7181 | . . . . . . . . 9 ⊢ ((𝐴 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝑥) = (𝐴 ∨ℋ 𝑥) |
22 | chjass 29468 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ Cℋ ∧ (𝐴 ∩ 𝐵) ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → ((𝐴 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝑥) = (𝐴 ∨ℋ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥))) | |
23 | 1, 3, 22 | mp3an12 1452 | . . . . . . . . 9 ⊢ (𝑥 ∈ Cℋ → ((𝐴 ∨ℋ (𝐴 ∩ 𝐵)) ∨ℋ 𝑥) = (𝐴 ∨ℋ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥))) |
24 | 21, 23 | syl5reqr 2788 | . . . . . . . 8 ⊢ (𝑥 ∈ Cℋ → (𝐴 ∨ℋ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥)) = (𝐴 ∨ℋ 𝑥)) |
25 | 24 | adantr 484 | . . . . . . 7 ⊢ ((𝑥 ∈ Cℋ ∧ ((𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ (𝐴 ∩ 𝐵)) ∧ (𝐴 ∩ 𝐵) ⋖ℋ 𝐵)) → (𝐴 ∨ℋ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥)) = (𝐴 ∨ℋ 𝑥)) |
26 | ancom 464 | . . . . . . . . . . 11 ⊢ ((𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ (𝐴 ∩ 𝐵)) ↔ (¬ 𝑥 ⊆ (𝐴 ∩ 𝐵) ∧ 𝑥 ⊆ 𝐵)) | |
27 | chnle 29449 | . . . . . . . . . . . . 13 ⊢ (((𝐴 ∩ 𝐵) ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → (¬ 𝑥 ⊆ (𝐴 ∩ 𝐵) ↔ (𝐴 ∩ 𝐵) ⊊ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥))) | |
28 | 3, 27 | mpan 690 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ Cℋ → (¬ 𝑥 ⊆ (𝐴 ∩ 𝐵) ↔ (𝐴 ∩ 𝐵) ⊊ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥))) |
29 | inss2 4121 | . . . . . . . . . . . . . 14 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
30 | 29 | biantrur 534 | . . . . . . . . . . . . 13 ⊢ (𝑥 ⊆ 𝐵 ↔ ((𝐴 ∩ 𝐵) ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐵)) |
31 | chlub 29444 | . . . . . . . . . . . . . 14 ⊢ (((𝐴 ∩ 𝐵) ∈ Cℋ ∧ 𝑥 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (((𝐴 ∩ 𝐵) ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐵) ↔ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ⊆ 𝐵)) | |
32 | 3, 2, 31 | mp3an13 1453 | . . . . . . . . . . . . 13 ⊢ (𝑥 ∈ Cℋ → (((𝐴 ∩ 𝐵) ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐵) ↔ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ⊆ 𝐵)) |
33 | 30, 32 | syl5bb 286 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ Cℋ → (𝑥 ⊆ 𝐵 ↔ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ⊆ 𝐵)) |
34 | 28, 33 | anbi12d 634 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ Cℋ → ((¬ 𝑥 ⊆ (𝐴 ∩ 𝐵) ∧ 𝑥 ⊆ 𝐵) ↔ ((𝐴 ∩ 𝐵) ⊊ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ∧ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ⊆ 𝐵))) |
35 | 26, 34 | syl5bb 286 | . . . . . . . . . 10 ⊢ (𝑥 ∈ Cℋ → ((𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ (𝐴 ∩ 𝐵)) ↔ ((𝐴 ∩ 𝐵) ⊊ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ∧ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ⊆ 𝐵))) |
36 | chjcl 29292 | . . . . . . . . . . . . 13 ⊢ (((𝐴 ∩ 𝐵) ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ∈ Cℋ ) | |
37 | 3, 36 | mpan 690 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ Cℋ → ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ∈ Cℋ ) |
38 | cvnbtwn2 30222 | . . . . . . . . . . . . 13 ⊢ (((𝐴 ∩ 𝐵) ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ∈ Cℋ ) → ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 → (((𝐴 ∩ 𝐵) ⊊ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ∧ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ⊆ 𝐵) → ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) = 𝐵))) | |
39 | 3, 2, 38 | mp3an12 1452 | . . . . . . . . . . . 12 ⊢ (((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ∈ Cℋ → ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 → (((𝐴 ∩ 𝐵) ⊊ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ∧ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ⊆ 𝐵) → ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) = 𝐵))) |
40 | 37, 39 | syl 17 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ Cℋ → ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 → (((𝐴 ∩ 𝐵) ⊊ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ∧ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ⊆ 𝐵) → ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) = 𝐵))) |
41 | 40 | com23 86 | . . . . . . . . . 10 ⊢ (𝑥 ∈ Cℋ → (((𝐴 ∩ 𝐵) ⊊ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ∧ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) ⊆ 𝐵) → ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 → ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) = 𝐵))) |
42 | 35, 41 | sylbid 243 | . . . . . . . . 9 ⊢ (𝑥 ∈ Cℋ → ((𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ (𝐴 ∩ 𝐵)) → ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 → ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) = 𝐵))) |
43 | 42 | imp32 422 | . . . . . . . 8 ⊢ ((𝑥 ∈ Cℋ ∧ ((𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ (𝐴 ∩ 𝐵)) ∧ (𝐴 ∩ 𝐵) ⋖ℋ 𝐵)) → ((𝐴 ∩ 𝐵) ∨ℋ 𝑥) = 𝐵) |
44 | 43 | oveq2d 7187 | . . . . . . 7 ⊢ ((𝑥 ∈ Cℋ ∧ ((𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ (𝐴 ∩ 𝐵)) ∧ (𝐴 ∩ 𝐵) ⋖ℋ 𝐵)) → (𝐴 ∨ℋ ((𝐴 ∩ 𝐵) ∨ℋ 𝑥)) = (𝐴 ∨ℋ 𝐵)) |
45 | 25, 44 | eqtr3d 2775 | . . . . . 6 ⊢ ((𝑥 ∈ Cℋ ∧ ((𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ (𝐴 ∩ 𝐵)) ∧ (𝐴 ∩ 𝐵) ⋖ℋ 𝐵)) → (𝐴 ∨ℋ 𝑥) = (𝐴 ∨ℋ 𝐵)) |
46 | 19, 45 | sylan 583 | . . . . 5 ⊢ ((𝑥 ∈ HAtoms ∧ ((𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ (𝐴 ∩ 𝐵)) ∧ (𝐴 ∩ 𝐵) ⋖ℋ 𝐵)) → (𝐴 ∨ℋ 𝑥) = (𝐴 ∨ℋ 𝐵)) |
47 | 18, 46 | breqtrd 5057 | . . . 4 ⊢ ((𝑥 ∈ HAtoms ∧ ((𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ (𝐴 ∩ 𝐵)) ∧ (𝐴 ∩ 𝐵) ⋖ℋ 𝐵)) → 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐵)) |
48 | 47 | exp32 424 | . . 3 ⊢ (𝑥 ∈ HAtoms → ((𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ (𝐴 ∩ 𝐵)) → ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 → 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐵)))) |
49 | 48 | rexlimiv 3190 | . 2 ⊢ (∃𝑥 ∈ HAtoms (𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ (𝐴 ∩ 𝐵)) → ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 → 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐵))) |
50 | 7, 49 | mpcom 38 | 1 ⊢ ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 → 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2113 ∃wrex 3054 ∩ cin 3843 ⊆ wss 3844 ⊊ wpss 3845 class class class wbr 5031 (class class class)co 7171 Cℋ cch 28864 ∨ℋ chj 28868 ⋖ℋ ccv 28899 HAtomscat 28900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5155 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7480 ax-inf2 9178 ax-cc 9936 ax-cnex 10672 ax-resscn 10673 ax-1cn 10674 ax-icn 10675 ax-addcl 10676 ax-addrcl 10677 ax-mulcl 10678 ax-mulrcl 10679 ax-mulcom 10680 ax-addass 10681 ax-mulass 10682 ax-distr 10683 ax-i2m1 10684 ax-1ne0 10685 ax-1rid 10686 ax-rnegex 10687 ax-rrecex 10688 ax-cnre 10689 ax-pre-lttri 10690 ax-pre-lttrn 10691 ax-pre-ltadd 10692 ax-pre-mulgt0 10693 ax-pre-sup 10694 ax-addf 10695 ax-mulf 10696 ax-hilex 28934 ax-hfvadd 28935 ax-hvcom 28936 ax-hvass 28937 ax-hv0cl 28938 ax-hvaddid 28939 ax-hfvmul 28940 ax-hvmulid 28941 ax-hvmulass 28942 ax-hvdistr1 28943 ax-hvdistr2 28944 ax-hvmul0 28945 ax-hfi 29014 ax-his1 29017 ax-his2 29018 ax-his3 29019 ax-his4 29020 ax-hcompl 29137 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3683 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-pss 3863 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-tp 4522 df-op 4524 df-uni 4798 df-int 4838 df-iun 4884 df-iin 4885 df-br 5032 df-opab 5094 df-mpt 5112 df-tr 5138 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5484 df-se 5485 df-we 5486 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7128 df-ov 7174 df-oprab 7175 df-mpo 7176 df-of 7426 df-om 7601 df-1st 7715 df-2nd 7716 df-supp 7858 df-wrecs 7977 df-recs 8038 df-rdg 8076 df-1o 8132 df-2o 8133 df-oadd 8136 df-omul 8137 df-er 8321 df-map 8440 df-pm 8441 df-ixp 8509 df-en 8557 df-dom 8558 df-sdom 8559 df-fin 8560 df-fsupp 8908 df-fi 8949 df-sup 8980 df-inf 8981 df-oi 9048 df-card 9442 df-acn 9445 df-pnf 10756 df-mnf 10757 df-xr 10758 df-ltxr 10759 df-le 10760 df-sub 10951 df-neg 10952 df-div 11377 df-nn 11718 df-2 11780 df-3 11781 df-4 11782 df-5 11783 df-6 11784 df-7 11785 df-8 11786 df-9 11787 df-n0 11978 df-z 12064 df-dec 12181 df-uz 12326 df-q 12432 df-rp 12474 df-xneg 12591 df-xadd 12592 df-xmul 12593 df-ioo 12826 df-ico 12828 df-icc 12829 df-fz 12983 df-fzo 13126 df-fl 13254 df-seq 13462 df-exp 13523 df-hash 13784 df-cj 14549 df-re 14550 df-im 14551 df-sqrt 14685 df-abs 14686 df-clim 14936 df-rlim 14937 df-sum 15137 df-struct 16589 df-ndx 16590 df-slot 16591 df-base 16593 df-sets 16594 df-ress 16595 df-plusg 16682 df-mulr 16683 df-starv 16684 df-sca 16685 df-vsca 16686 df-ip 16687 df-tset 16688 df-ple 16689 df-ds 16691 df-unif 16692 df-hom 16693 df-cco 16694 df-rest 16800 df-topn 16801 df-0g 16819 df-gsum 16820 df-topgen 16821 df-pt 16822 df-prds 16825 df-xrs 16879 df-qtop 16884 df-imas 16885 df-xps 16887 df-mre 16961 df-mrc 16962 df-acs 16964 df-mgm 17969 df-sgrp 18018 df-mnd 18029 df-submnd 18074 df-mulg 18344 df-cntz 18566 df-cmn 19027 df-psmet 20210 df-xmet 20211 df-met 20212 df-bl 20213 df-mopn 20214 df-fbas 20215 df-fg 20216 df-cnfld 20219 df-top 21646 df-topon 21663 df-topsp 21685 df-bases 21698 df-cld 21771 df-ntr 21772 df-cls 21773 df-nei 21850 df-cn 21979 df-cnp 21980 df-lm 21981 df-haus 22067 df-tx 22314 df-hmeo 22507 df-fil 22598 df-fm 22690 df-flim 22691 df-flf 22692 df-xms 23074 df-ms 23075 df-tms 23076 df-cfil 24008 df-cau 24009 df-cmet 24010 df-grpo 28428 df-gid 28429 df-ginv 28430 df-gdiv 28431 df-ablo 28480 df-vc 28494 df-nv 28527 df-va 28530 df-ba 28531 df-sm 28532 df-0v 28533 df-vs 28534 df-nmcv 28535 df-ims 28536 df-dip 28636 df-ssp 28657 df-ph 28748 df-cbn 28798 df-hnorm 28903 df-hba 28904 df-hvsub 28906 df-hlim 28907 df-hcau 28908 df-sh 29142 df-ch 29156 df-oc 29187 df-ch0 29188 df-shs 29243 df-span 29244 df-chj 29245 df-chsup 29246 df-pjh 29330 df-cv 30214 df-at 30273 |
This theorem is referenced by: cvexchi 30304 |
Copyright terms: Public domain | W3C validator |