HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvnbtwn3 Structured version   Visualization version   GIF version

Theorem cvnbtwn3 30049
Description: The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvnbtwn3 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵 → ((𝐴𝐶𝐶𝐵) → 𝐶 = 𝐴)))

Proof of Theorem cvnbtwn3
StepHypRef Expression
1 cvnbtwn 30047 . 2 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵 → ¬ (𝐴𝐶𝐶𝐵)))
2 iman 405 . . 3 (((𝐴𝐶𝐶𝐵) → 𝐴 = 𝐶) ↔ ¬ ((𝐴𝐶𝐶𝐵) ∧ ¬ 𝐴 = 𝐶))
3 eqcom 2828 . . . 4 (𝐶 = 𝐴𝐴 = 𝐶)
43imbi2i 339 . . 3 (((𝐴𝐶𝐶𝐵) → 𝐶 = 𝐴) ↔ ((𝐴𝐶𝐶𝐵) → 𝐴 = 𝐶))
5 dfpss2 4038 . . . . . 6 (𝐴𝐶 ↔ (𝐴𝐶 ∧ ¬ 𝐴 = 𝐶))
65anbi1i 626 . . . . 5 ((𝐴𝐶𝐶𝐵) ↔ ((𝐴𝐶 ∧ ¬ 𝐴 = 𝐶) ∧ 𝐶𝐵))
7 an32 645 . . . . 5 (((𝐴𝐶 ∧ ¬ 𝐴 = 𝐶) ∧ 𝐶𝐵) ↔ ((𝐴𝐶𝐶𝐵) ∧ ¬ 𝐴 = 𝐶))
86, 7bitri 278 . . . 4 ((𝐴𝐶𝐶𝐵) ↔ ((𝐴𝐶𝐶𝐵) ∧ ¬ 𝐴 = 𝐶))
98notbii 323 . . 3 (¬ (𝐴𝐶𝐶𝐵) ↔ ¬ ((𝐴𝐶𝐶𝐵) ∧ ¬ 𝐴 = 𝐶))
102, 4, 93bitr4ri 307 . 2 (¬ (𝐴𝐶𝐶𝐵) ↔ ((𝐴𝐶𝐶𝐵) → 𝐶 = 𝐴))
111, 10syl6ib 254 1 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵 → ((𝐴𝐶𝐶𝐵) → 𝐶 = 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  wss 3910  wpss 3911   class class class wbr 5039   C cch 28690   ccv 28725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pr 5303
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-ral 3131  df-rex 3132  df-rab 3135  df-v 3473  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-sn 4541  df-pr 4543  df-op 4547  df-br 5040  df-opab 5102  df-cv 30040
This theorem is referenced by:  atcveq0  30109  atcvatlem  30146
  Copyright terms: Public domain W3C validator