HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvnbtwn3 Structured version   Visualization version   GIF version

Theorem cvnbtwn3 32320
Description: The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvnbtwn3 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵 → ((𝐴𝐶𝐶𝐵) → 𝐶 = 𝐴)))

Proof of Theorem cvnbtwn3
StepHypRef Expression
1 cvnbtwn 32318 . 2 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵 → ¬ (𝐴𝐶𝐶𝐵)))
2 iman 401 . . 3 (((𝐴𝐶𝐶𝐵) → 𝐴 = 𝐶) ↔ ¬ ((𝐴𝐶𝐶𝐵) ∧ ¬ 𝐴 = 𝐶))
3 eqcom 2747 . . . 4 (𝐶 = 𝐴𝐴 = 𝐶)
43imbi2i 336 . . 3 (((𝐴𝐶𝐶𝐵) → 𝐶 = 𝐴) ↔ ((𝐴𝐶𝐶𝐵) → 𝐴 = 𝐶))
5 dfpss2 4111 . . . . . 6 (𝐴𝐶 ↔ (𝐴𝐶 ∧ ¬ 𝐴 = 𝐶))
65anbi1i 623 . . . . 5 ((𝐴𝐶𝐶𝐵) ↔ ((𝐴𝐶 ∧ ¬ 𝐴 = 𝐶) ∧ 𝐶𝐵))
7 an32 645 . . . . 5 (((𝐴𝐶 ∧ ¬ 𝐴 = 𝐶) ∧ 𝐶𝐵) ↔ ((𝐴𝐶𝐶𝐵) ∧ ¬ 𝐴 = 𝐶))
86, 7bitri 275 . . . 4 ((𝐴𝐶𝐶𝐵) ↔ ((𝐴𝐶𝐶𝐵) ∧ ¬ 𝐴 = 𝐶))
98notbii 320 . . 3 (¬ (𝐴𝐶𝐶𝐵) ↔ ¬ ((𝐴𝐶𝐶𝐵) ∧ ¬ 𝐴 = 𝐶))
102, 4, 93bitr4ri 304 . 2 (¬ (𝐴𝐶𝐶𝐵) ↔ ((𝐴𝐶𝐶𝐵) → 𝐶 = 𝐴))
111, 10imbitrdi 251 1 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵 → ((𝐴𝐶𝐶𝐵) → 𝐶 = 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wss 3976  wpss 3977   class class class wbr 5166   C cch 30961   ccv 30996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-cv 32311
This theorem is referenced by:  atcveq0  32380  atcvatlem  32417
  Copyright terms: Public domain W3C validator