Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > cvnbtwn3 | Structured version Visualization version GIF version |
Description: The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cvnbtwn3 | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵) → 𝐶 = 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvnbtwn 30549 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵))) | |
2 | iman 401 | . . 3 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵) → 𝐴 = 𝐶) ↔ ¬ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵) ∧ ¬ 𝐴 = 𝐶)) | |
3 | eqcom 2745 | . . . 4 ⊢ (𝐶 = 𝐴 ↔ 𝐴 = 𝐶) | |
4 | 3 | imbi2i 335 | . . 3 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵) → 𝐶 = 𝐴) ↔ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵) → 𝐴 = 𝐶)) |
5 | dfpss2 4016 | . . . . . 6 ⊢ (𝐴 ⊊ 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ ¬ 𝐴 = 𝐶)) | |
6 | 5 | anbi1i 623 | . . . . 5 ⊢ ((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵) ↔ ((𝐴 ⊆ 𝐶 ∧ ¬ 𝐴 = 𝐶) ∧ 𝐶 ⊊ 𝐵)) |
7 | an32 642 | . . . . 5 ⊢ (((𝐴 ⊆ 𝐶 ∧ ¬ 𝐴 = 𝐶) ∧ 𝐶 ⊊ 𝐵) ↔ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵) ∧ ¬ 𝐴 = 𝐶)) | |
8 | 6, 7 | bitri 274 | . . . 4 ⊢ ((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵) ↔ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵) ∧ ¬ 𝐴 = 𝐶)) |
9 | 8 | notbii 319 | . . 3 ⊢ (¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵) ↔ ¬ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵) ∧ ¬ 𝐴 = 𝐶)) |
10 | 2, 4, 9 | 3bitr4ri 303 | . 2 ⊢ (¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵) ↔ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵) → 𝐶 = 𝐴)) |
11 | 1, 10 | syl6ib 250 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵) → 𝐶 = 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ⊊ wpss 3884 class class class wbr 5070 Cℋ cch 29192 ⋖ℋ ccv 29227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-cv 30542 |
This theorem is referenced by: atcveq0 30611 atcvatlem 30648 |
Copyright terms: Public domain | W3C validator |