Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > cvnbtwn3 | Structured version Visualization version GIF version |
Description: The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cvnbtwn3 | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵) → 𝐶 = 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvnbtwn 30657 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵))) | |
2 | iman 402 | . . 3 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵) → 𝐴 = 𝐶) ↔ ¬ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵) ∧ ¬ 𝐴 = 𝐶)) | |
3 | eqcom 2747 | . . . 4 ⊢ (𝐶 = 𝐴 ↔ 𝐴 = 𝐶) | |
4 | 3 | imbi2i 336 | . . 3 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵) → 𝐶 = 𝐴) ↔ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵) → 𝐴 = 𝐶)) |
5 | dfpss2 4025 | . . . . . 6 ⊢ (𝐴 ⊊ 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ ¬ 𝐴 = 𝐶)) | |
6 | 5 | anbi1i 624 | . . . . 5 ⊢ ((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵) ↔ ((𝐴 ⊆ 𝐶 ∧ ¬ 𝐴 = 𝐶) ∧ 𝐶 ⊊ 𝐵)) |
7 | an32 643 | . . . . 5 ⊢ (((𝐴 ⊆ 𝐶 ∧ ¬ 𝐴 = 𝐶) ∧ 𝐶 ⊊ 𝐵) ↔ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵) ∧ ¬ 𝐴 = 𝐶)) | |
8 | 6, 7 | bitri 274 | . . . 4 ⊢ ((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵) ↔ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵) ∧ ¬ 𝐴 = 𝐶)) |
9 | 8 | notbii 320 | . . 3 ⊢ (¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵) ↔ ¬ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵) ∧ ¬ 𝐴 = 𝐶)) |
10 | 2, 4, 9 | 3bitr4ri 304 | . 2 ⊢ (¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵) ↔ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵) → 𝐶 = 𝐴)) |
11 | 1, 10 | syl6ib 250 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵) → 𝐶 = 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ⊆ wss 3892 ⊊ wpss 3893 class class class wbr 5079 Cℋ cch 29300 ⋖ℋ ccv 29335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-cv 30650 |
This theorem is referenced by: atcveq0 30719 atcvatlem 30756 |
Copyright terms: Public domain | W3C validator |