| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > cvnbtwn3 | Structured version Visualization version GIF version | ||
| Description: The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cvnbtwn3 | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵) → 𝐶 = 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvnbtwn 32215 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵))) | |
| 2 | iman 401 | . . 3 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵) → 𝐴 = 𝐶) ↔ ¬ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵) ∧ ¬ 𝐴 = 𝐶)) | |
| 3 | eqcom 2736 | . . . 4 ⊢ (𝐶 = 𝐴 ↔ 𝐴 = 𝐶) | |
| 4 | 3 | imbi2i 336 | . . 3 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵) → 𝐶 = 𝐴) ↔ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵) → 𝐴 = 𝐶)) |
| 5 | dfpss2 4051 | . . . . . 6 ⊢ (𝐴 ⊊ 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ ¬ 𝐴 = 𝐶)) | |
| 6 | 5 | anbi1i 624 | . . . . 5 ⊢ ((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵) ↔ ((𝐴 ⊆ 𝐶 ∧ ¬ 𝐴 = 𝐶) ∧ 𝐶 ⊊ 𝐵)) |
| 7 | an32 646 | . . . . 5 ⊢ (((𝐴 ⊆ 𝐶 ∧ ¬ 𝐴 = 𝐶) ∧ 𝐶 ⊊ 𝐵) ↔ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵) ∧ ¬ 𝐴 = 𝐶)) | |
| 8 | 6, 7 | bitri 275 | . . . 4 ⊢ ((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵) ↔ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵) ∧ ¬ 𝐴 = 𝐶)) |
| 9 | 8 | notbii 320 | . . 3 ⊢ (¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵) ↔ ¬ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵) ∧ ¬ 𝐴 = 𝐶)) |
| 10 | 2, 4, 9 | 3bitr4ri 304 | . 2 ⊢ (¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵) ↔ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵) → 𝐶 = 𝐴)) |
| 11 | 1, 10 | imbitrdi 251 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵) → 𝐶 = 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 ⊊ wpss 3915 class class class wbr 5107 Cℋ cch 30858 ⋖ℋ ccv 30893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-cv 32208 |
| This theorem is referenced by: atcveq0 32277 atcvatlem 32314 |
| Copyright terms: Public domain | W3C validator |