HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvnbtwn3 Structured version   Visualization version   GIF version

Theorem cvnbtwn3 32254
Description: The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvnbtwn3 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵 → ((𝐴𝐶𝐶𝐵) → 𝐶 = 𝐴)))

Proof of Theorem cvnbtwn3
StepHypRef Expression
1 cvnbtwn 32252 . 2 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵 → ¬ (𝐴𝐶𝐶𝐵)))
2 iman 401 . . 3 (((𝐴𝐶𝐶𝐵) → 𝐴 = 𝐶) ↔ ¬ ((𝐴𝐶𝐶𝐵) ∧ ¬ 𝐴 = 𝐶))
3 eqcom 2741 . . . 4 (𝐶 = 𝐴𝐴 = 𝐶)
43imbi2i 336 . . 3 (((𝐴𝐶𝐶𝐵) → 𝐶 = 𝐴) ↔ ((𝐴𝐶𝐶𝐵) → 𝐴 = 𝐶))
5 dfpss2 4070 . . . . . 6 (𝐴𝐶 ↔ (𝐴𝐶 ∧ ¬ 𝐴 = 𝐶))
65anbi1i 624 . . . . 5 ((𝐴𝐶𝐶𝐵) ↔ ((𝐴𝐶 ∧ ¬ 𝐴 = 𝐶) ∧ 𝐶𝐵))
7 an32 646 . . . . 5 (((𝐴𝐶 ∧ ¬ 𝐴 = 𝐶) ∧ 𝐶𝐵) ↔ ((𝐴𝐶𝐶𝐵) ∧ ¬ 𝐴 = 𝐶))
86, 7bitri 275 . . . 4 ((𝐴𝐶𝐶𝐵) ↔ ((𝐴𝐶𝐶𝐵) ∧ ¬ 𝐴 = 𝐶))
98notbii 320 . . 3 (¬ (𝐴𝐶𝐶𝐵) ↔ ¬ ((𝐴𝐶𝐶𝐵) ∧ ¬ 𝐴 = 𝐶))
102, 4, 93bitr4ri 304 . 2 (¬ (𝐴𝐶𝐶𝐵) ↔ ((𝐴𝐶𝐶𝐵) → 𝐶 = 𝐴))
111, 10imbitrdi 251 1 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵 → ((𝐴𝐶𝐶𝐵) → 𝐶 = 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wss 3933  wpss 3934   class class class wbr 5125   C cch 30895   ccv 30930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-br 5126  df-opab 5188  df-cv 32245
This theorem is referenced by:  atcveq0  32314  atcvatlem  32351
  Copyright terms: Public domain W3C validator