| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5p1e6 | Structured version Visualization version GIF version | ||
| Description: 5 + 1 = 6. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 5p1e6 | ⊢ (5 + 1) = 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-6 12260 | . 2 ⊢ 6 = (5 + 1) | |
| 2 | 1 | eqcomi 2739 | 1 ⊢ (5 + 1) = 6 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7390 1c1 11076 + caddc 11078 5c5 12251 6c6 12252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-6 12260 |
| This theorem is referenced by: 8t8e64 12777 9t7e63 12783 5recm6rec 12799 fldiv4p1lem1div2 13804 s6len 14874 5ndvds6 16391 163prm 17102 631prm 17104 1259lem1 17108 1259lem4 17111 2503lem1 17114 2503lem2 17115 4001lem1 17118 4001lem4 17121 4001prm 17122 log2ublem3 26865 log2ub 26866 fib6 34404 hgt750lemd 34646 hgt750lem2 34650 60gcd7e1 42000 12lcm5e60 42003 3lexlogpow5ineq1 42049 3lexlogpow5ineq5 42055 aks4d1p1 42071 3cubeslem3l 42681 fmtno5lem2 47559 fmtno5lem3 47560 fmtno5lem4 47561 fmtno4prmfac193 47578 fmtno4nprmfac193 47579 fmtno5faclem3 47586 flsqrt5 47599 127prm 47604 gbowge7 47768 gbege6 47770 sbgoldbwt 47782 nnsum3primesle9 47799 |
| Copyright terms: Public domain | W3C validator |