| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5p1e6 | Structured version Visualization version GIF version | ||
| Description: 5 + 1 = 6. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 5p1e6 | ⊢ (5 + 1) = 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-6 12307 | . 2 ⊢ 6 = (5 + 1) | |
| 2 | 1 | eqcomi 2744 | 1 ⊢ (5 + 1) = 6 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7405 1c1 11130 + caddc 11132 5c5 12298 6c6 12299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-6 12307 |
| This theorem is referenced by: 8t8e64 12829 9t7e63 12835 5recm6rec 12851 fldiv4p1lem1div2 13852 s6len 14920 5ndvds6 16433 163prm 17144 631prm 17146 1259lem1 17150 1259lem4 17153 2503lem1 17156 2503lem2 17157 4001lem1 17160 4001lem4 17163 4001prm 17164 log2ublem3 26910 log2ub 26911 fib6 34438 hgt750lemd 34680 hgt750lem2 34684 60gcd7e1 42018 12lcm5e60 42021 3lexlogpow5ineq1 42067 3lexlogpow5ineq5 42073 aks4d1p1 42089 3cubeslem3l 42709 fmtno5lem2 47568 fmtno5lem3 47569 fmtno5lem4 47570 fmtno4prmfac193 47587 fmtno4nprmfac193 47588 fmtno5faclem3 47595 flsqrt5 47608 127prm 47613 gbowge7 47777 gbege6 47779 sbgoldbwt 47791 nnsum3primesle9 47808 |
| Copyright terms: Public domain | W3C validator |