![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 5p1e6 | Structured version Visualization version GIF version |
Description: 5 + 1 = 6. (Contributed by Mario Carneiro, 18-Apr-2015.) |
Ref | Expression |
---|---|
5p1e6 | ⊢ (5 + 1) = 6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-6 12360 | . 2 ⊢ 6 = (5 + 1) | |
2 | 1 | eqcomi 2749 | 1 ⊢ (5 + 1) = 6 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7448 1c1 11185 + caddc 11187 5c5 12351 6c6 12352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-6 12360 |
This theorem is referenced by: 8t8e64 12879 9t7e63 12885 5recm6rec 12902 fldiv4p1lem1div2 13886 s6len 14950 163prm 17172 631prm 17174 1259lem1 17178 1259lem4 17181 2503lem1 17184 2503lem2 17185 4001lem1 17188 4001lem4 17191 4001prm 17192 log2ublem3 27009 log2ub 27010 fib6 34371 hgt750lemd 34625 hgt750lem2 34629 60gcd7e1 41962 12lcm5e60 41965 3lexlogpow5ineq1 42011 3lexlogpow5ineq5 42017 aks4d1p1 42033 3cubeslem3l 42642 fmtno5lem2 47428 fmtno5lem3 47429 fmtno5lem4 47430 fmtno4prmfac193 47447 fmtno4nprmfac193 47448 fmtno5faclem3 47455 flsqrt5 47468 127prm 47473 gbowge7 47637 gbege6 47639 sbgoldbwt 47651 nnsum3primesle9 47668 |
Copyright terms: Public domain | W3C validator |