| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5p1e6 | Structured version Visualization version GIF version | ||
| Description: 5 + 1 = 6. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 5p1e6 | ⊢ (5 + 1) = 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-6 12229 | . 2 ⊢ 6 = (5 + 1) | |
| 2 | 1 | eqcomi 2738 | 1 ⊢ (5 + 1) = 6 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7369 1c1 11045 + caddc 11047 5c5 12220 6c6 12221 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-6 12229 |
| This theorem is referenced by: 8t8e64 12746 9t7e63 12752 5recm6rec 12768 fldiv4p1lem1div2 13773 s6len 14843 5ndvds6 16360 163prm 17071 631prm 17073 1259lem1 17077 1259lem4 17080 2503lem1 17083 2503lem2 17084 4001lem1 17087 4001lem4 17090 4001prm 17091 log2ublem3 26891 log2ub 26892 fib6 34390 hgt750lemd 34632 hgt750lem2 34636 60gcd7e1 41986 12lcm5e60 41989 3lexlogpow5ineq1 42035 3lexlogpow5ineq5 42041 aks4d1p1 42057 3cubeslem3l 42667 fmtno5lem2 47548 fmtno5lem3 47549 fmtno5lem4 47550 fmtno4prmfac193 47567 fmtno4nprmfac193 47568 fmtno5faclem3 47575 flsqrt5 47588 127prm 47593 gbowge7 47757 gbege6 47759 sbgoldbwt 47771 nnsum3primesle9 47788 |
| Copyright terms: Public domain | W3C validator |