![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 5p1e6 | Structured version Visualization version GIF version |
Description: 5 + 1 = 6. (Contributed by Mario Carneiro, 18-Apr-2015.) |
Ref | Expression |
---|---|
5p1e6 | ⊢ (5 + 1) = 6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-6 12331 | . 2 ⊢ 6 = (5 + 1) | |
2 | 1 | eqcomi 2744 | 1 ⊢ (5 + 1) = 6 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7431 1c1 11154 + caddc 11156 5c5 12322 6c6 12323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-6 12331 |
This theorem is referenced by: 8t8e64 12852 9t7e63 12858 5recm6rec 12875 fldiv4p1lem1div2 13872 s6len 14937 5ndvds6 16448 163prm 17159 631prm 17161 1259lem1 17165 1259lem4 17168 2503lem1 17171 2503lem2 17172 4001lem1 17175 4001lem4 17178 4001prm 17179 log2ublem3 27006 log2ub 27007 fib6 34388 hgt750lemd 34642 hgt750lem2 34646 60gcd7e1 41987 12lcm5e60 41990 3lexlogpow5ineq1 42036 3lexlogpow5ineq5 42042 aks4d1p1 42058 3cubeslem3l 42674 fmtno5lem2 47479 fmtno5lem3 47480 fmtno5lem4 47481 fmtno4prmfac193 47498 fmtno4nprmfac193 47499 fmtno5faclem3 47506 flsqrt5 47519 127prm 47524 gbowge7 47688 gbege6 47690 sbgoldbwt 47702 nnsum3primesle9 47719 |
Copyright terms: Public domain | W3C validator |