| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5p1e6 | Structured version Visualization version GIF version | ||
| Description: 5 + 1 = 6. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 5p1e6 | ⊢ (5 + 1) = 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-6 12192 | . 2 ⊢ 6 = (5 + 1) | |
| 2 | 1 | eqcomi 2740 | 1 ⊢ (5 + 1) = 6 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7346 1c1 11007 + caddc 11009 5c5 12183 6c6 12184 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-6 12192 |
| This theorem is referenced by: 8t8e64 12709 9t7e63 12715 5recm6rec 12731 fldiv4p1lem1div2 13739 s6len 14808 5ndvds6 16325 163prm 17036 631prm 17038 1259lem1 17042 1259lem4 17045 2503lem1 17048 2503lem2 17049 4001lem1 17052 4001lem4 17055 4001prm 17056 log2ublem3 26885 log2ub 26886 fib6 34419 hgt750lemd 34661 hgt750lem2 34665 60gcd7e1 42097 12lcm5e60 42100 3lexlogpow5ineq1 42146 3lexlogpow5ineq5 42152 aks4d1p1 42168 3cubeslem3l 42778 fmtno5lem2 47653 fmtno5lem3 47654 fmtno5lem4 47655 fmtno4prmfac193 47672 fmtno4nprmfac193 47673 fmtno5faclem3 47680 flsqrt5 47693 127prm 47698 gbowge7 47862 gbege6 47864 sbgoldbwt 47876 nnsum3primesle9 47893 |
| Copyright terms: Public domain | W3C validator |