Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 5p1e6 | Structured version Visualization version GIF version |
Description: 5 + 1 = 6. (Contributed by Mario Carneiro, 18-Apr-2015.) |
Ref | Expression |
---|---|
5p1e6 | ⊢ (5 + 1) = 6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-6 11945 | . 2 ⊢ 6 = (5 + 1) | |
2 | 1 | eqcomi 2748 | 1 ⊢ (5 + 1) = 6 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 (class class class)co 7252 1c1 10778 + caddc 10780 5c5 11936 6c6 11937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-9 2122 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 df-cleq 2731 df-6 11945 |
This theorem is referenced by: 8t8e64 12462 9t7e63 12468 5recm6rec 12485 fldiv4p1lem1div2 13458 s6len 14517 163prm 16729 631prm 16731 1259lem1 16735 1259lem4 16738 2503lem1 16741 2503lem2 16742 4001lem1 16745 4001lem4 16748 4001prm 16749 log2ublem3 25978 log2ub 25979 fib6 32248 hgt750lemd 32503 hgt750lem2 32507 60gcd7e1 39920 12lcm5e60 39923 3lexlogpow5ineq1 39969 3lexlogpow5ineq5 39975 aks4d1p1 39990 3cubeslem3l 40396 fmtno5lem2 44867 fmtno5lem3 44868 fmtno5lem4 44869 fmtno4prmfac193 44886 fmtno4nprmfac193 44887 fmtno5faclem3 44894 flsqrt5 44907 127prm 44912 gbowge7 45076 gbege6 45078 sbgoldbwt 45090 nnsum3primesle9 45107 |
Copyright terms: Public domain | W3C validator |