| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5p1e6 | Structured version Visualization version GIF version | ||
| Description: 5 + 1 = 6. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 5p1e6 | ⊢ (5 + 1) = 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-6 12253 | . 2 ⊢ 6 = (5 + 1) | |
| 2 | 1 | eqcomi 2738 | 1 ⊢ (5 + 1) = 6 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7387 1c1 11069 + caddc 11071 5c5 12244 6c6 12245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-6 12253 |
| This theorem is referenced by: 8t8e64 12770 9t7e63 12776 5recm6rec 12792 fldiv4p1lem1div2 13797 s6len 14867 5ndvds6 16384 163prm 17095 631prm 17097 1259lem1 17101 1259lem4 17104 2503lem1 17107 2503lem2 17108 4001lem1 17111 4001lem4 17114 4001prm 17115 log2ublem3 26858 log2ub 26859 fib6 34397 hgt750lemd 34639 hgt750lem2 34643 60gcd7e1 41993 12lcm5e60 41996 3lexlogpow5ineq1 42042 3lexlogpow5ineq5 42048 aks4d1p1 42064 3cubeslem3l 42674 fmtno5lem2 47555 fmtno5lem3 47556 fmtno5lem4 47557 fmtno4prmfac193 47574 fmtno4nprmfac193 47575 fmtno5faclem3 47582 flsqrt5 47595 127prm 47600 gbowge7 47764 gbege6 47766 sbgoldbwt 47778 nnsum3primesle9 47795 |
| Copyright terms: Public domain | W3C validator |