| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 5p1e6 | Structured version Visualization version GIF version | ||
| Description: 5 + 1 = 6. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 5p1e6 | ⊢ (5 + 1) = 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-6 12195 | . 2 ⊢ 6 = (5 + 1) | |
| 2 | 1 | eqcomi 2738 | 1 ⊢ (5 + 1) = 6 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7349 1c1 11010 + caddc 11012 5c5 12186 6c6 12187 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-6 12195 |
| This theorem is referenced by: 8t8e64 12712 9t7e63 12718 5recm6rec 12734 fldiv4p1lem1div2 13739 s6len 14808 5ndvds6 16325 163prm 17036 631prm 17038 1259lem1 17042 1259lem4 17045 2503lem1 17048 2503lem2 17049 4001lem1 17052 4001lem4 17055 4001prm 17056 log2ublem3 26856 log2ub 26857 fib6 34380 hgt750lemd 34622 hgt750lem2 34626 60gcd7e1 41988 12lcm5e60 41991 3lexlogpow5ineq1 42037 3lexlogpow5ineq5 42043 aks4d1p1 42059 3cubeslem3l 42669 fmtno5lem2 47548 fmtno5lem3 47549 fmtno5lem4 47550 fmtno4prmfac193 47567 fmtno4nprmfac193 47568 fmtno5faclem3 47575 flsqrt5 47588 127prm 47593 gbowge7 47757 gbege6 47759 sbgoldbwt 47771 nnsum3primesle9 47788 |
| Copyright terms: Public domain | W3C validator |