| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6t6e36 | Structured version Visualization version GIF version | ||
| Description: 6 times 6 equals 36. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| 6t6e36 | ⊢ (6 · 6) = ;36 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6nn0 12423 | . 2 ⊢ 6 ∈ ℕ0 | |
| 2 | 5nn0 12422 | . 2 ⊢ 5 ∈ ℕ0 | |
| 3 | df-6 12213 | . 2 ⊢ 6 = (5 + 1) | |
| 4 | 6t5e30 12716 | . . 3 ⊢ (6 · 5) = ;30 | |
| 5 | 3nn0 12420 | . . . 4 ⊢ 3 ∈ ℕ0 | |
| 6 | 5 | dec0u 12630 | . . 3 ⊢ (;10 · 3) = ;30 |
| 7 | 4, 6 | eqtr4i 2755 | . 2 ⊢ (6 · 5) = (;10 · 3) |
| 8 | dfdec10 12612 | . . 3 ⊢ ;36 = ((;10 · 3) + 6) | |
| 9 | 8 | eqcomi 2738 | . 2 ⊢ ((;10 · 3) + 6) = ;36 |
| 10 | 1, 2, 3, 7, 9 | 4t3lem 12706 | 1 ⊢ (6 · 6) = ;36 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7353 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 3c3 12202 5c5 12204 6c6 12205 ;cdc 12609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 df-sub 11367 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-dec 12610 |
| This theorem is referenced by: 2exp8 17018 2exp16 17020 1259lem2 17061 2503lem2 17067 4001lem1 17070 sq6 42268 fmtno5lem1 47538 fmtno5faclem2 47565 flsqrt5 47579 |
| Copyright terms: Public domain | W3C validator |