![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 7p6e13 | Structured version Visualization version GIF version |
Description: 7 + 6 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
7p6e13 | ⊢ (7 + 6) = ;13 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 7nn0 12548 | . 2 ⊢ 7 ∈ ℕ0 | |
2 | 5nn0 12546 | . 2 ⊢ 5 ∈ ℕ0 | |
3 | 2nn0 12543 | . 2 ⊢ 2 ∈ ℕ0 | |
4 | df-6 12333 | . 2 ⊢ 6 = (5 + 1) | |
5 | df-3 12330 | . 2 ⊢ 3 = (2 + 1) | |
6 | 7p5e12 12808 | . 2 ⊢ (7 + 5) = ;12 | |
7 | 1, 2, 3, 4, 5, 6 | 6p5lem 12801 | 1 ⊢ (7 + 6) = ;13 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 (class class class)co 7426 1c1 11161 + caddc 11163 2c2 12321 3c3 12322 5c5 12324 6c6 12325 7c7 12326 ;cdc 12731 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5306 ax-nul 5313 ax-pow 5371 ax-pr 5435 ax-un 7748 ax-resscn 11217 ax-1cn 11218 ax-icn 11219 ax-addcl 11220 ax-addrcl 11221 ax-mulcl 11222 ax-mulrcl 11223 ax-mulcom 11224 ax-addass 11225 ax-mulass 11226 ax-distr 11227 ax-i2m1 11228 ax-1ne0 11229 ax-1rid 11230 ax-rnegex 11231 ax-rrecex 11232 ax-cnre 11233 ax-pre-lttri 11234 ax-pre-lttrn 11235 ax-pre-ltadd 11236 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4916 df-iun 5005 df-br 5156 df-opab 5218 df-mpt 5239 df-tr 5273 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5639 df-we 5641 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6314 df-ord 6381 df-on 6382 df-lim 6383 df-suc 6384 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-ov 7429 df-om 7879 df-2nd 8006 df-frecs 8298 df-wrecs 8329 df-recs 8403 df-rdg 8442 df-er 8736 df-en 8977 df-dom 8978 df-sdom 8979 df-pnf 11302 df-mnf 11303 df-ltxr 11305 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-dec 12732 |
This theorem is referenced by: 7p7e14 12810 83prm 17127 139prm 17128 163prm 17129 631prm 17131 1259lem1 17135 2503lem2 17142 4001lem4 17148 log2ub 26980 139prmALT 47186 |
Copyright terms: Public domain | W3C validator |