Proof of Theorem 2lgsoddprmlem3d
Step | Hyp | Ref
| Expression |
1 | | 6cn 11994 |
. . 3
⊢ 6 ∈
ℂ |
2 | | 8cn 12000 |
. . 3
⊢ 8 ∈
ℂ |
3 | | 0re 10908 |
. . . 4
⊢ 0 ∈
ℝ |
4 | | 8pos 12015 |
. . . 4
⊢ 0 <
8 |
5 | 3, 4 | gtneii 11017 |
. . 3
⊢ 8 ≠
0 |
6 | 1, 2, 5 | divcan4i 11652 |
. 2
⊢ ((6
· 8) / 8) = 6 |
7 | 1, 2 | mulcli 10913 |
. . . 4
⊢ (6
· 8) ∈ ℂ |
8 | | ax-1cn 10860 |
. . . 4
⊢ 1 ∈
ℂ |
9 | | 4p3e7 12057 |
. . . . . . 7
⊢ (4 + 3) =
7 |
10 | 9 | eqcomi 2747 |
. . . . . 6
⊢ 7 = (4 +
3) |
11 | 10 | oveq1i 7265 |
. . . . 5
⊢
(7↑2) = ((4 + 3)↑2) |
12 | | 4cn 11988 |
. . . . . . 7
⊢ 4 ∈
ℂ |
13 | | 3cn 11984 |
. . . . . . 7
⊢ 3 ∈
ℂ |
14 | 12, 13 | binom2i 13856 |
. . . . . 6
⊢ ((4 +
3)↑2) = (((4↑2) + (2 · (4 · 3))) +
(3↑2)) |
15 | | sq4e2t8 13844 |
. . . . . . . . . 10
⊢
(4↑2) = (2 · 8) |
16 | | 2cn 11978 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℂ |
17 | | 4t2e8 12071 |
. . . . . . . . . . . . 13
⊢ (4
· 2) = 8 |
18 | 12, 16, 17 | mulcomli 10915 |
. . . . . . . . . . . 12
⊢ (2
· 4) = 8 |
19 | 18 | oveq1i 7265 |
. . . . . . . . . . 11
⊢ ((2
· 4) · 3) = (8 · 3) |
20 | 16, 12, 13 | mulassi 10917 |
. . . . . . . . . . 11
⊢ ((2
· 4) · 3) = (2 · (4 · 3)) |
21 | 2, 13 | mulcomi 10914 |
. . . . . . . . . . 11
⊢ (8
· 3) = (3 · 8) |
22 | 19, 20, 21 | 3eqtr3i 2774 |
. . . . . . . . . 10
⊢ (2
· (4 · 3)) = (3 · 8) |
23 | 15, 22 | oveq12i 7267 |
. . . . . . . . 9
⊢
((4↑2) + (2 · (4 · 3))) = ((2 · 8) + (3
· 8)) |
24 | 16, 13, 2 | adddiri 10919 |
. . . . . . . . 9
⊢ ((2 + 3)
· 8) = ((2 · 8) + (3 · 8)) |
25 | | 3p2e5 12054 |
. . . . . . . . . . 11
⊢ (3 + 2) =
5 |
26 | 13, 16, 25 | addcomli 11097 |
. . . . . . . . . 10
⊢ (2 + 3) =
5 |
27 | 26 | oveq1i 7265 |
. . . . . . . . 9
⊢ ((2 + 3)
· 8) = (5 · 8) |
28 | 23, 24, 27 | 3eqtr2i 2772 |
. . . . . . . 8
⊢
((4↑2) + (2 · (4 · 3))) = (5 ·
8) |
29 | | sq3 13843 |
. . . . . . . . 9
⊢
(3↑2) = 9 |
30 | | df-9 11973 |
. . . . . . . . 9
⊢ 9 = (8 +
1) |
31 | 29, 30 | eqtri 2766 |
. . . . . . . 8
⊢
(3↑2) = (8 + 1) |
32 | 28, 31 | oveq12i 7267 |
. . . . . . 7
⊢
(((4↑2) + (2 · (4 · 3))) + (3↑2)) = ((5 ·
8) + (8 + 1)) |
33 | | 5cn 11991 |
. . . . . . . . 9
⊢ 5 ∈
ℂ |
34 | 33, 2 | mulcli 10913 |
. . . . . . . 8
⊢ (5
· 8) ∈ ℂ |
35 | 34, 2, 8 | addassi 10916 |
. . . . . . 7
⊢ (((5
· 8) + 8) + 1) = ((5 · 8) + (8 + 1)) |
36 | | df-6 11970 |
. . . . . . . . . . 11
⊢ 6 = (5 +
1) |
37 | 36 | oveq1i 7265 |
. . . . . . . . . 10
⊢ (6
· 8) = ((5 + 1) · 8) |
38 | 33 | a1i 11 |
. . . . . . . . . . . 12
⊢ (8 ∈
ℂ → 5 ∈ ℂ) |
39 | | id 22 |
. . . . . . . . . . . 12
⊢ (8 ∈
ℂ → 8 ∈ ℂ) |
40 | 38, 39 | adddirp1d 10932 |
. . . . . . . . . . 11
⊢ (8 ∈
ℂ → ((5 + 1) · 8) = ((5 · 8) + 8)) |
41 | 2, 40 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((5 + 1)
· 8) = ((5 · 8) + 8) |
42 | 37, 41 | eqtri 2766 |
. . . . . . . . 9
⊢ (6
· 8) = ((5 · 8) + 8) |
43 | 42 | eqcomi 2747 |
. . . . . . . 8
⊢ ((5
· 8) + 8) = (6 · 8) |
44 | 43 | oveq1i 7265 |
. . . . . . 7
⊢ (((5
· 8) + 8) + 1) = ((6 · 8) + 1) |
45 | 32, 35, 44 | 3eqtr2i 2772 |
. . . . . 6
⊢
(((4↑2) + (2 · (4 · 3))) + (3↑2)) = ((6 ·
8) + 1) |
46 | 14, 45 | eqtri 2766 |
. . . . 5
⊢ ((4 +
3)↑2) = ((6 · 8) + 1) |
47 | 11, 46 | eqtri 2766 |
. . . 4
⊢
(7↑2) = ((6 · 8) + 1) |
48 | 7, 8, 47 | mvrraddi 11168 |
. . 3
⊢
((7↑2) − 1) = (6 · 8) |
49 | 48 | oveq1i 7265 |
. 2
⊢
(((7↑2) − 1) / 8) = ((6 · 8) / 8) |
50 | | 3t2e6 12069 |
. . 3
⊢ (3
· 2) = 6 |
51 | 13, 16, 50 | mulcomli 10915 |
. 2
⊢ (2
· 3) = 6 |
52 | 6, 49, 51 | 3eqtr4i 2776 |
1
⊢
(((7↑2) − 1) / 8) = (2 · 3) |