Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 6re | Structured version Visualization version GIF version |
Description: The number 6 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
6re | ⊢ 6 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-6 12133 | . 2 ⊢ 6 = (5 + 1) | |
2 | 5re 12153 | . . 3 ⊢ 5 ∈ ℝ | |
3 | 1re 11068 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 11083 | . 2 ⊢ (5 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2833 | 1 ⊢ 6 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 (class class class)co 7329 ℝcr 10963 1c1 10965 + caddc 10967 5c5 12124 6c6 12125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-i2m1 11032 ax-1ne0 11033 ax-rrecex 11036 ax-cnre 11037 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-iota 6425 df-fv 6481 df-ov 7332 df-2 12129 df-3 12130 df-4 12131 df-5 12132 df-6 12133 |
This theorem is referenced by: 7re 12159 7pos 12177 4lt6 12248 3lt6 12249 2lt6 12250 1lt6 12251 6lt7 12252 5lt7 12253 6lt8 12259 5lt8 12260 6lt9 12267 5lt9 12268 8th4div3 12286 halfpm6th 12287 div4p1lem1div2 12321 6lt10 12664 5lt10 12665 5recm6rec 12674 bpoly2 15858 bpoly3 15859 efi4p 15937 resin4p 15938 recos4p 15939 ef01bndlem 15984 sin01bnd 15985 cos01bnd 15986 slotsdifipndx 17134 slotstnscsi 17159 plendxnvscandx 17173 slotsdnscsi 17191 lt6abl 19583 sralemOLD 20538 sravscaOLD 20548 zlmlemOLD 20817 sincos6thpi 25770 pigt3 25772 basellem5 26332 basellem8 26335 basellem9 26336 ppiublem1 26448 ppiublem2 26449 ppiub 26450 chtub 26458 bposlem6 26535 bposlem8 26537 slotsinbpsd 27032 slotslnbpsd 27033 ex-res 29034 zlmdsOLD 32152 zlmtsetOLD 32154 hgt750lemd 32869 hgt750lem2 32873 hgt750leme 32879 problem4 33866 problem5 33867 gbegt5 45553 gbowgt5 45554 gbowge7 45555 gboge9 45556 sbgoldbwt 45569 sgoldbeven3prm 45575 mogoldbb 45577 sbgoldbo 45579 nnsum3primesle9 45586 nnsum4primesodd 45588 wtgoldbnnsum4prm 45594 bgoldbnnsum3prm 45596 pgrple2abl 46041 |
Copyright terms: Public domain | W3C validator |