| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6re | Structured version Visualization version GIF version | ||
| Description: The number 6 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 6re | ⊢ 6 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-6 12312 | . 2 ⊢ 6 = (5 + 1) | |
| 2 | 5re 12332 | . . 3 ⊢ 5 ∈ ℝ | |
| 3 | 1re 11240 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 11255 | . 2 ⊢ (5 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2831 | 1 ⊢ 6 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7410 ℝcr 11133 1c1 11135 + caddc 11137 5c5 12303 6c6 12304 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-i2m1 11202 ax-1ne0 11203 ax-rrecex 11206 ax-cnre 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 |
| This theorem is referenced by: 7re 12338 7pos 12356 4lt6 12427 3lt6 12428 2lt6 12429 1lt6 12430 6lt7 12431 5lt7 12432 6lt8 12438 5lt8 12439 6lt9 12446 5lt9 12447 8th4div3 12466 halfpm6th 12468 div4p1lem1div2 12501 6lt10 12847 5lt10 12848 5recm6rec 12856 bpoly2 16078 bpoly3 16079 efi4p 16160 resin4p 16161 recos4p 16162 ef01bndlem 16207 sin01bnd 16208 cos01bnd 16209 slotsdifipndx 17354 slotstnscsi 17379 plendxnvscandx 17393 slotsdnscsi 17411 lt6abl 19881 sincos6thpi 26482 pigt3 26484 basellem5 27052 basellem8 27055 basellem9 27056 ppiublem1 27170 ppiublem2 27171 ppiub 27172 chtub 27180 bposlem6 27257 bposlem8 27259 slotsinbpsd 28425 slotslnbpsd 28426 ex-res 30427 hgt750lemd 34685 hgt750lem2 34689 hgt750leme 34695 problem4 35695 problem5 35696 6rp 42319 asin1half 42375 gbegt5 47755 gbowgt5 47756 gbowge7 47757 gboge9 47758 sbgoldbwt 47771 sgoldbeven3prm 47777 mogoldbb 47779 sbgoldbo 47781 nnsum3primesle9 47788 nnsum4primesodd 47790 wtgoldbnnsum4prm 47796 bgoldbnnsum3prm 47798 pgrple2abl 48320 |
| Copyright terms: Public domain | W3C validator |