![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 6re | Structured version Visualization version GIF version |
Description: The number 6 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
6re | ⊢ 6 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-6 11558 | . 2 ⊢ 6 = (5 + 1) | |
2 | 5re 11578 | . . 3 ⊢ 5 ∈ ℝ | |
3 | 1re 10494 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 10509 | . 2 ⊢ (5 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2881 | 1 ⊢ 6 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2083 (class class class)co 7023 ℝcr 10389 1c1 10391 + caddc 10393 5c5 11549 6c6 11550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-ext 2771 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-i2m1 10458 ax-1ne0 10459 ax-rrecex 10462 ax-cnre 10463 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-ral 3112 df-rex 3113 df-rab 3116 df-v 3442 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-sn 4479 df-pr 4481 df-op 4485 df-uni 4752 df-br 4969 df-iota 6196 df-fv 6240 df-ov 7026 df-2 11554 df-3 11555 df-4 11556 df-5 11557 df-6 11558 |
This theorem is referenced by: 7re 11584 7pos 11602 4lt6 11673 3lt6 11674 2lt6 11675 1lt6 11676 6lt7 11677 5lt7 11678 6lt8 11684 5lt8 11685 6lt9 11692 5lt9 11693 8th4div3 11711 halfpm6th 11712 div4p1lem1div2 11746 6lt10 12086 5lt10 12087 5recm6rec 12096 bpoly2 15248 bpoly3 15249 efi4p 15327 resin4p 15328 recos4p 15329 ef01bndlem 15374 sin01bnd 15375 cos01bnd 15376 lt6abl 18740 sralem 19643 sravsca 19648 zlmlem 20350 sincos6thpi 24788 pigt3 24790 basellem5 25348 basellem8 25351 basellem9 25352 ppiublem1 25464 ppiublem2 25465 ppiub 25466 chtub 25474 bposlem6 25551 bposlem8 25553 ex-res 27908 zlmds 30818 zlmtset 30819 hgt750lemd 31532 hgt750lem2 31536 hgt750leme 31542 problem4 32521 problem5 32522 gbegt5 43430 gbowgt5 43431 gbowge7 43432 gboge9 43433 sbgoldbwt 43446 sgoldbeven3prm 43452 mogoldbb 43454 sbgoldbo 43456 nnsum3primesle9 43463 nnsum4primesodd 43465 wtgoldbnnsum4prm 43471 bgoldbnnsum3prm 43473 pgrple2abl 43915 |
Copyright terms: Public domain | W3C validator |