| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6re | Structured version Visualization version GIF version | ||
| Description: The number 6 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 6re | ⊢ 6 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-6 12195 | . 2 ⊢ 6 = (5 + 1) | |
| 2 | 5re 12215 | . . 3 ⊢ 5 ∈ ℝ | |
| 3 | 1re 11115 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 11130 | . 2 ⊢ (5 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 6 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7349 ℝcr 11008 1c1 11010 + caddc 11012 5c5 12186 6c6 12187 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-i2m1 11077 ax-1ne0 11078 ax-rrecex 11081 ax-cnre 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 |
| This theorem is referenced by: 7re 12221 7pos 12239 4lt6 12305 3lt6 12306 2lt6 12307 1lt6 12308 6lt7 12309 5lt7 12310 6lt8 12316 5lt8 12317 6lt9 12324 5lt9 12325 8th4div3 12344 halfpm6th 12346 div4p1lem1div2 12379 6lt10 12725 5lt10 12726 5recm6rec 12734 bpoly2 15964 bpoly3 15965 efi4p 16046 resin4p 16047 recos4p 16048 ef01bndlem 16093 sin01bnd 16094 cos01bnd 16095 slotsdifipndx 17239 slotstnscsi 17264 plendxnvscandx 17278 slotsdnscsi 17296 lt6abl 19774 sincos6thpi 26423 pigt3 26425 basellem5 26993 basellem8 26996 basellem9 26997 ppiublem1 27111 ppiublem2 27112 ppiub 27113 chtub 27121 bposlem6 27198 bposlem8 27200 slotsinbpsd 28386 slotslnbpsd 28387 ex-res 30385 hgt750lemd 34622 hgt750lem2 34626 hgt750leme 34632 problem4 35651 problem5 35652 6rp 42284 asin1half 42340 gbegt5 47755 gbowgt5 47756 gbowge7 47757 gboge9 47758 sbgoldbwt 47771 sgoldbeven3prm 47777 mogoldbb 47779 sbgoldbo 47781 nnsum3primesle9 47788 nnsum4primesodd 47790 wtgoldbnnsum4prm 47796 bgoldbnnsum3prm 47798 pgrple2abl 48359 |
| Copyright terms: Public domain | W3C validator |