![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 6re | Structured version Visualization version GIF version |
Description: The number 6 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
6re | ⊢ 6 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-6 12360 | . 2 ⊢ 6 = (5 + 1) | |
2 | 5re 12380 | . . 3 ⊢ 5 ∈ ℝ | |
3 | 1re 11290 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 11305 | . 2 ⊢ (5 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2840 | 1 ⊢ 6 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7448 ℝcr 11183 1c1 11185 + caddc 11187 5c5 12351 6c6 12352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-i2m1 11252 ax-1ne0 11253 ax-rrecex 11256 ax-cnre 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 |
This theorem is referenced by: 7re 12386 7pos 12404 4lt6 12475 3lt6 12476 2lt6 12477 1lt6 12478 6lt7 12479 5lt7 12480 6lt8 12486 5lt8 12487 6lt9 12494 5lt9 12495 8th4div3 12513 halfpm6th 12514 div4p1lem1div2 12548 6lt10 12892 5lt10 12893 5recm6rec 12902 bpoly2 16105 bpoly3 16106 efi4p 16185 resin4p 16186 recos4p 16187 ef01bndlem 16232 sin01bnd 16233 cos01bnd 16234 slotsdifipndx 17394 slotstnscsi 17419 plendxnvscandx 17433 slotsdnscsi 17451 lt6abl 19937 sralemOLD 21199 sravscaOLD 21209 zlmlemOLD 21551 sincos6thpi 26576 pigt3 26578 basellem5 27146 basellem8 27149 basellem9 27150 ppiublem1 27264 ppiublem2 27265 ppiub 27266 chtub 27274 bposlem6 27351 bposlem8 27353 slotsinbpsd 28467 slotslnbpsd 28468 ex-res 30473 zlmdsOLD 33909 zlmtsetOLD 33911 hgt750lemd 34625 hgt750lem2 34629 hgt750leme 34635 problem4 35636 problem5 35637 6rp 42289 asin1half 42339 gbegt5 47635 gbowgt5 47636 gbowge7 47637 gboge9 47638 sbgoldbwt 47651 sgoldbeven3prm 47657 mogoldbb 47659 sbgoldbo 47661 nnsum3primesle9 47668 nnsum4primesodd 47670 wtgoldbnnsum4prm 47676 bgoldbnnsum3prm 47678 pgrple2abl 48090 |
Copyright terms: Public domain | W3C validator |