| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6re | Structured version Visualization version GIF version | ||
| Description: The number 6 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 6re | ⊢ 6 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-6 12253 | . 2 ⊢ 6 = (5 + 1) | |
| 2 | 5re 12273 | . . 3 ⊢ 5 ∈ ℝ | |
| 3 | 1re 11174 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 11189 | . 2 ⊢ (5 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 6 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7387 ℝcr 11067 1c1 11069 + caddc 11071 5c5 12244 6c6 12245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-i2m1 11136 ax-1ne0 11137 ax-rrecex 11140 ax-cnre 11141 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 |
| This theorem is referenced by: 7re 12279 7pos 12297 4lt6 12363 3lt6 12364 2lt6 12365 1lt6 12366 6lt7 12367 5lt7 12368 6lt8 12374 5lt8 12375 6lt9 12382 5lt9 12383 8th4div3 12402 halfpm6th 12404 div4p1lem1div2 12437 6lt10 12783 5lt10 12784 5recm6rec 12792 bpoly2 16023 bpoly3 16024 efi4p 16105 resin4p 16106 recos4p 16107 ef01bndlem 16152 sin01bnd 16153 cos01bnd 16154 slotsdifipndx 17298 slotstnscsi 17323 plendxnvscandx 17337 slotsdnscsi 17355 lt6abl 19825 sincos6thpi 26425 pigt3 26427 basellem5 26995 basellem8 26998 basellem9 26999 ppiublem1 27113 ppiublem2 27114 ppiub 27115 chtub 27123 bposlem6 27200 bposlem8 27202 slotsinbpsd 28368 slotslnbpsd 28369 ex-res 30370 hgt750lemd 34639 hgt750lem2 34643 hgt750leme 34649 problem4 35655 problem5 35656 6rp 42289 asin1half 42345 gbegt5 47762 gbowgt5 47763 gbowge7 47764 gboge9 47765 sbgoldbwt 47778 sgoldbeven3prm 47784 mogoldbb 47786 sbgoldbo 47788 nnsum3primesle9 47795 nnsum4primesodd 47797 wtgoldbnnsum4prm 47803 bgoldbnnsum3prm 47805 pgrple2abl 48353 |
| Copyright terms: Public domain | W3C validator |