Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 6re | Structured version Visualization version GIF version |
Description: The number 6 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
6re | ⊢ 6 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-6 12040 | . 2 ⊢ 6 = (5 + 1) | |
2 | 5re 12060 | . . 3 ⊢ 5 ∈ ℝ | |
3 | 1re 10975 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 10990 | . 2 ⊢ (5 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ 6 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 (class class class)co 7275 ℝcr 10870 1c1 10872 + caddc 10874 5c5 12031 6c6 12032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-i2m1 10939 ax-1ne0 10940 ax-rrecex 10943 ax-cnre 10944 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 |
This theorem is referenced by: 7re 12066 7pos 12084 4lt6 12155 3lt6 12156 2lt6 12157 1lt6 12158 6lt7 12159 5lt7 12160 6lt8 12166 5lt8 12167 6lt9 12174 5lt9 12175 8th4div3 12193 halfpm6th 12194 div4p1lem1div2 12228 6lt10 12571 5lt10 12572 5recm6rec 12581 bpoly2 15767 bpoly3 15768 efi4p 15846 resin4p 15847 recos4p 15848 ef01bndlem 15893 sin01bnd 15894 cos01bnd 15895 slotsdifipndx 17045 slotstnscsi 17070 plendxnvscandx 17084 slotsdnscsi 17102 lt6abl 19496 sralemOLD 20440 sravscaOLD 20450 zlmlemOLD 20719 sincos6thpi 25672 pigt3 25674 basellem5 26234 basellem8 26237 basellem9 26238 ppiublem1 26350 ppiublem2 26351 ppiub 26352 chtub 26360 bposlem6 26437 bposlem8 26439 slotsinbpsd 26802 slotslnbpsd 26803 ex-res 28805 zlmdsOLD 31913 zlmtsetOLD 31915 hgt750lemd 32628 hgt750lem2 32632 hgt750leme 32638 problem4 33626 problem5 33627 gbegt5 45213 gbowgt5 45214 gbowge7 45215 gboge9 45216 sbgoldbwt 45229 sgoldbeven3prm 45235 mogoldbb 45237 sbgoldbo 45239 nnsum3primesle9 45246 nnsum4primesodd 45248 wtgoldbnnsum4prm 45254 bgoldbnnsum3prm 45256 pgrple2abl 45701 |
Copyright terms: Public domain | W3C validator |