| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6re | Structured version Visualization version GIF version | ||
| Description: The number 6 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 6re | ⊢ 6 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-6 12229 | . 2 ⊢ 6 = (5 + 1) | |
| 2 | 5re 12249 | . . 3 ⊢ 5 ∈ ℝ | |
| 3 | 1re 11150 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 11165 | . 2 ⊢ (5 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 6 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7369 ℝcr 11043 1c1 11045 + caddc 11047 5c5 12220 6c6 12221 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-i2m1 11112 ax-1ne0 11113 ax-rrecex 11116 ax-cnre 11117 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 |
| This theorem is referenced by: 7re 12255 7pos 12273 4lt6 12339 3lt6 12340 2lt6 12341 1lt6 12342 6lt7 12343 5lt7 12344 6lt8 12350 5lt8 12351 6lt9 12358 5lt9 12359 8th4div3 12378 halfpm6th 12380 div4p1lem1div2 12413 6lt10 12759 5lt10 12760 5recm6rec 12768 bpoly2 15999 bpoly3 16000 efi4p 16081 resin4p 16082 recos4p 16083 ef01bndlem 16128 sin01bnd 16129 cos01bnd 16130 slotsdifipndx 17274 slotstnscsi 17299 plendxnvscandx 17313 slotsdnscsi 17331 lt6abl 19809 sincos6thpi 26458 pigt3 26460 basellem5 27028 basellem8 27031 basellem9 27032 ppiublem1 27146 ppiublem2 27147 ppiub 27148 chtub 27156 bposlem6 27233 bposlem8 27235 slotsinbpsd 28421 slotslnbpsd 28422 ex-res 30420 hgt750lemd 34632 hgt750lem2 34636 hgt750leme 34642 problem4 35648 problem5 35649 6rp 42282 asin1half 42338 gbegt5 47755 gbowgt5 47756 gbowge7 47757 gboge9 47758 sbgoldbwt 47771 sgoldbeven3prm 47777 mogoldbb 47779 sbgoldbo 47781 nnsum3primesle9 47788 nnsum4primesodd 47790 wtgoldbnnsum4prm 47796 bgoldbnnsum3prm 47798 pgrple2abl 48346 |
| Copyright terms: Public domain | W3C validator |