![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 6re | Structured version Visualization version GIF version |
Description: The number 6 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
6re | ⊢ 6 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-6 12331 | . 2 ⊢ 6 = (5 + 1) | |
2 | 5re 12351 | . . 3 ⊢ 5 ∈ ℝ | |
3 | 1re 11259 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 11274 | . 2 ⊢ (5 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ 6 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 (class class class)co 7431 ℝcr 11152 1c1 11154 + caddc 11156 5c5 12322 6c6 12323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-i2m1 11221 ax-1ne0 11222 ax-rrecex 11225 ax-cnre 11226 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 |
This theorem is referenced by: 7re 12357 7pos 12375 4lt6 12446 3lt6 12447 2lt6 12448 1lt6 12449 6lt7 12450 5lt7 12451 6lt8 12457 5lt8 12458 6lt9 12465 5lt9 12466 8th4div3 12484 halfpm6th 12485 div4p1lem1div2 12519 6lt10 12865 5lt10 12866 5recm6rec 12875 bpoly2 16090 bpoly3 16091 efi4p 16170 resin4p 16171 recos4p 16172 ef01bndlem 16217 sin01bnd 16218 cos01bnd 16219 slotsdifipndx 17381 slotstnscsi 17406 plendxnvscandx 17420 slotsdnscsi 17438 lt6abl 19928 sralemOLD 21194 sravscaOLD 21204 zlmlemOLD 21546 sincos6thpi 26573 pigt3 26575 basellem5 27143 basellem8 27146 basellem9 27147 ppiublem1 27261 ppiublem2 27262 ppiub 27263 chtub 27271 bposlem6 27348 bposlem8 27350 slotsinbpsd 28464 slotslnbpsd 28465 ex-res 30470 zlmdsOLD 33924 zlmtsetOLD 33926 hgt750lemd 34642 hgt750lem2 34646 hgt750leme 34652 problem4 35653 problem5 35654 6rp 42314 asin1half 42366 gbegt5 47686 gbowgt5 47687 gbowge7 47688 gboge9 47689 sbgoldbwt 47702 sgoldbeven3prm 47708 mogoldbb 47710 sbgoldbo 47712 nnsum3primesle9 47719 nnsum4primesodd 47721 wtgoldbnnsum4prm 47727 bgoldbnnsum3prm 47729 pgrple2abl 48210 |
Copyright terms: Public domain | W3C validator |