Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 6re | Structured version Visualization version GIF version |
Description: The number 6 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
6re | ⊢ 6 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-6 11970 | . 2 ⊢ 6 = (5 + 1) | |
2 | 5re 11990 | . . 3 ⊢ 5 ∈ ℝ | |
3 | 1re 10906 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 10921 | . 2 ⊢ (5 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ 6 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7255 ℝcr 10801 1c1 10803 + caddc 10805 5c5 11961 6c6 11962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-i2m1 10870 ax-1ne0 10871 ax-rrecex 10874 ax-cnre 10875 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 |
This theorem is referenced by: 7re 11996 7pos 12014 4lt6 12085 3lt6 12086 2lt6 12087 1lt6 12088 6lt7 12089 5lt7 12090 6lt8 12096 5lt8 12097 6lt9 12104 5lt9 12105 8th4div3 12123 halfpm6th 12124 div4p1lem1div2 12158 6lt10 12500 5lt10 12501 5recm6rec 12510 bpoly2 15695 bpoly3 15696 efi4p 15774 resin4p 15775 recos4p 15776 ef01bndlem 15821 sin01bnd 15822 cos01bnd 15823 slotstnscsi 16994 plendxnvscandx 17008 slotsdnscsi 17023 lt6abl 19411 sralemOLD 20355 sravsca 20363 zlmlemOLD 20631 sincos6thpi 25577 pigt3 25579 basellem5 26139 basellem8 26142 basellem9 26143 ppiublem1 26255 ppiublem2 26256 ppiub 26257 chtub 26265 bposlem6 26342 bposlem8 26344 slotsinbpsd 26707 slotslnbpsd 26708 ex-res 28706 zlmds 31814 zlmtset 31815 hgt750lemd 32528 hgt750lem2 32532 hgt750leme 32538 problem4 33526 problem5 33527 gbegt5 45101 gbowgt5 45102 gbowge7 45103 gboge9 45104 sbgoldbwt 45117 sgoldbeven3prm 45123 mogoldbb 45125 sbgoldbo 45127 nnsum3primesle9 45134 nnsum4primesodd 45136 wtgoldbnnsum4prm 45142 bgoldbnnsum3prm 45144 pgrple2abl 45589 |
Copyright terms: Public domain | W3C validator |