| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6re | Structured version Visualization version GIF version | ||
| Description: The number 6 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 6re | ⊢ 6 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-6 12334 | . 2 ⊢ 6 = (5 + 1) | |
| 2 | 5re 12354 | . . 3 ⊢ 5 ∈ ℝ | |
| 3 | 1re 11262 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 11277 | . 2 ⊢ (5 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2836 | 1 ⊢ 6 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 (class class class)co 7432 ℝcr 11155 1c1 11157 + caddc 11159 5c5 12325 6c6 12326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-i2m1 11224 ax-1ne0 11225 ax-rrecex 11228 ax-cnre 11229 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-iota 6513 df-fv 6568 df-ov 7435 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 |
| This theorem is referenced by: 7re 12360 7pos 12378 4lt6 12449 3lt6 12450 2lt6 12451 1lt6 12452 6lt7 12453 5lt7 12454 6lt8 12460 5lt8 12461 6lt9 12468 5lt9 12469 8th4div3 12488 halfpm6th 12490 div4p1lem1div2 12523 6lt10 12869 5lt10 12870 5recm6rec 12878 bpoly2 16094 bpoly3 16095 efi4p 16174 resin4p 16175 recos4p 16176 ef01bndlem 16221 sin01bnd 16222 cos01bnd 16223 slotsdifipndx 17380 slotstnscsi 17405 plendxnvscandx 17419 slotsdnscsi 17437 lt6abl 19914 sralemOLD 21177 sravscaOLD 21187 zlmlemOLD 21529 sincos6thpi 26559 pigt3 26561 basellem5 27129 basellem8 27132 basellem9 27133 ppiublem1 27247 ppiublem2 27248 ppiub 27249 chtub 27257 bposlem6 27334 bposlem8 27336 slotsinbpsd 28450 slotslnbpsd 28451 ex-res 30461 zlmdsOLD 33963 zlmtsetOLD 33965 hgt750lemd 34664 hgt750lem2 34668 hgt750leme 34674 problem4 35674 problem5 35675 6rp 42340 asin1half 42392 gbegt5 47753 gbowgt5 47754 gbowge7 47755 gboge9 47756 sbgoldbwt 47769 sgoldbeven3prm 47775 mogoldbb 47777 sbgoldbo 47779 nnsum3primesle9 47786 nnsum4primesodd 47788 wtgoldbnnsum4prm 47794 bgoldbnnsum3prm 47796 pgrple2abl 48286 |
| Copyright terms: Public domain | W3C validator |