| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6re | Structured version Visualization version GIF version | ||
| Description: The number 6 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 6re | ⊢ 6 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-6 12192 | . 2 ⊢ 6 = (5 + 1) | |
| 2 | 5re 12212 | . . 3 ⊢ 5 ∈ ℝ | |
| 3 | 1re 11112 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 11127 | . 2 ⊢ (5 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2827 | 1 ⊢ 6 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 (class class class)co 7346 ℝcr 11005 1c1 11007 + caddc 11009 5c5 12183 6c6 12184 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-i2m1 11074 ax-1ne0 11075 ax-rrecex 11078 ax-cnre 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 |
| This theorem is referenced by: 7re 12218 7pos 12236 4lt6 12302 3lt6 12303 2lt6 12304 1lt6 12305 6lt7 12306 5lt7 12307 6lt8 12313 5lt8 12314 6lt9 12321 5lt9 12322 8th4div3 12341 halfpm6th 12343 div4p1lem1div2 12376 6lt10 12722 5lt10 12723 5recm6rec 12731 bpoly2 15964 bpoly3 15965 efi4p 16046 resin4p 16047 recos4p 16048 ef01bndlem 16093 sin01bnd 16094 cos01bnd 16095 slotsdifipndx 17239 slotstnscsi 17264 plendxnvscandx 17278 slotsdnscsi 17296 lt6abl 19807 sincos6thpi 26452 pigt3 26454 basellem5 27022 basellem8 27025 basellem9 27026 ppiublem1 27140 ppiublem2 27141 ppiub 27142 chtub 27150 bposlem6 27227 bposlem8 27229 slotsinbpsd 28419 slotslnbpsd 28420 ex-res 30421 hgt750lemd 34661 hgt750lem2 34665 hgt750leme 34671 problem4 35712 problem5 35713 6rp 42404 asin1half 42460 gbegt5 47871 gbowgt5 47872 gbowge7 47873 gboge9 47874 sbgoldbwt 47887 sgoldbeven3prm 47893 mogoldbb 47895 sbgoldbo 47897 nnsum3primesle9 47904 nnsum4primesodd 47906 wtgoldbnnsum4prm 47912 bgoldbnnsum3prm 47914 pgrple2abl 48475 |
| Copyright terms: Public domain | W3C validator |