![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 6cn | Structured version Visualization version GIF version |
Description: The number 6 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
6cn | ⊢ 6 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-6 12360 | . 2 ⊢ 6 = (5 + 1) | |
2 | 5cn 12381 | . . 3 ⊢ 5 ∈ ℂ | |
3 | ax-1cn 11242 | . . 3 ⊢ 1 ∈ ℂ | |
4 | 2, 3 | addcli 11296 | . 2 ⊢ (5 + 1) ∈ ℂ |
5 | 1, 4 | eqeltri 2840 | 1 ⊢ 6 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 1c1 11185 + caddc 11187 5c5 12351 6c6 12352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-1cn 11242 ax-addcl 11244 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-clel 2819 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 |
This theorem is referenced by: 7cn 12387 7m1e6 12425 6p2e8 12452 6p3e9 12453 halfpm6th 12514 6p4e10 12830 6t2e12 12862 6t3e18 12863 6t5e30 12865 5recm6rec 12902 bpoly2 16105 bpoly3 16106 bpoly4 16107 efi4p 16185 ef01bndlem 16232 cos01bnd 16234 3lcm2e6woprm 16662 6lcm4e12 16663 2exp8 17136 2exp11 17137 2exp16 17138 19prm 17165 83prm 17170 163prm 17172 317prm 17173 631prm 17174 1259lem1 17178 1259lem2 17179 1259lem3 17180 1259lem4 17181 1259lem5 17182 2503lem1 17184 2503lem2 17185 2503lem3 17186 2503prm 17187 4001lem1 17188 4001lem2 17189 4001lem4 17191 4001prm 17192 sincos6thpi 26576 sincos3rdpi 26577 1cubrlem 26902 log2ublem3 27009 log2ub 27010 basellem5 27146 basellem8 27149 ppiub 27266 bclbnd 27342 bposlem8 27353 bposlem9 27354 2lgslem3d 27461 2lgsoddprmlem3d 27475 ex-exp 30482 ex-bc 30484 ex-gcd 30489 ex-lcm 30490 hgt750lemd 34625 hgt750lem2 34629 problem5 35637 60gcd6e6 41961 60lcm7e420 41967 3exp7 42010 3lexlogpow5ineq1 42011 3lexlogpow5ineq5 42017 aks4d1p1p5 42032 aks4d1p1 42033 sq6 42283 lhe4.4ex1a 44298 wallispi2lem2 45993 fmtno5lem1 47427 fmtno5lem4 47430 fmtno5 47431 fmtno4prmfac 47446 fmtno5faclem2 47454 fmtno5faclem3 47455 fmtno5fac 47456 flsqrt5 47468 139prmALT 47470 127prm 47473 mod42tp1mod8 47476 2t6m3t4e0 48073 zlmodzxzequa 48225 zlmodzxzequap 48228 |
Copyright terms: Public domain | W3C validator |