| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6cn | Structured version Visualization version GIF version | ||
| Description: The number 6 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| 6cn | ⊢ 6 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-6 12260 | . 2 ⊢ 6 = (5 + 1) | |
| 2 | 5cn 12281 | . . 3 ⊢ 5 ∈ ℂ | |
| 3 | ax-1cn 11133 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 2, 3 | addcli 11187 | . 2 ⊢ (5 + 1) ∈ ℂ |
| 5 | 1, 4 | eqeltri 2825 | 1 ⊢ 6 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 1c1 11076 + caddc 11078 5c5 12251 6c6 12252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-1cn 11133 ax-addcl 11135 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-clel 2804 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 |
| This theorem is referenced by: 7cn 12287 7m1e6 12320 6p2e8 12347 6p3e9 12348 halfpm6th 12411 6p4e10 12728 6t2e12 12760 6t3e18 12761 6t5e30 12763 5recm6rec 12799 bpoly2 16030 bpoly3 16031 bpoly4 16032 efi4p 16112 ef01bndlem 16159 cos01bnd 16161 3lcm2e6woprm 16592 6lcm4e12 16593 2exp8 17066 2exp11 17067 2exp16 17068 19prm 17095 83prm 17100 163prm 17102 317prm 17103 631prm 17104 1259lem1 17108 1259lem2 17109 1259lem3 17110 1259lem4 17111 1259lem5 17112 2503lem1 17114 2503lem2 17115 2503lem3 17116 2503prm 17117 4001lem1 17118 4001lem2 17119 4001lem4 17121 4001prm 17122 sincos6thpi 26432 sincos3rdpi 26433 1cubrlem 26758 log2ublem3 26865 log2ub 26866 basellem5 27002 basellem8 27005 ppiub 27122 bclbnd 27198 bposlem8 27209 bposlem9 27210 2lgslem3d 27317 2lgsoddprmlem3d 27331 ex-exp 30386 ex-bc 30388 ex-gcd 30393 ex-lcm 30394 hgt750lemd 34646 hgt750lem2 34650 problem5 35663 60gcd6e6 41999 60lcm7e420 42005 3exp7 42048 3lexlogpow5ineq1 42049 3lexlogpow5ineq5 42055 aks4d1p1p5 42070 aks4d1p1 42071 sq6 42290 lhe4.4ex1a 44325 wallispi2lem2 46077 fmtno5lem1 47558 fmtno5lem4 47561 fmtno5 47562 fmtno4prmfac 47577 fmtno5faclem2 47585 fmtno5faclem3 47586 fmtno5fac 47587 flsqrt5 47599 139prmALT 47601 127prm 47604 mod42tp1mod8 47607 2t6m3t4e0 48340 zlmodzxzequa 48489 zlmodzxzequap 48492 |
| Copyright terms: Public domain | W3C validator |