![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 6cn | Structured version Visualization version GIF version |
Description: The number 6 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
6cn | ⊢ 6 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-6 12279 | . 2 ⊢ 6 = (5 + 1) | |
2 | 5cn 12300 | . . 3 ⊢ 5 ∈ ℂ | |
3 | ax-1cn 11168 | . . 3 ⊢ 1 ∈ ℂ | |
4 | 2, 3 | addcli 11220 | . 2 ⊢ (5 + 1) ∈ ℂ |
5 | 1, 4 | eqeltri 2830 | 1 ⊢ 6 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 (class class class)co 7409 ℂcc 11108 1c1 11111 + caddc 11113 5c5 12270 6c6 12271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-1cn 11168 ax-addcl 11170 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-cleq 2725 df-clel 2811 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 |
This theorem is referenced by: 7cn 12306 7m1e6 12344 6p2e8 12371 6p3e9 12372 halfpm6th 12433 6p4e10 12749 6t2e12 12781 6t3e18 12782 6t5e30 12784 5recm6rec 12821 bpoly2 16001 bpoly3 16002 bpoly4 16003 efi4p 16080 ef01bndlem 16127 cos01bnd 16129 3lcm2e6woprm 16552 6lcm4e12 16553 2exp8 17022 2exp11 17023 2exp16 17024 19prm 17051 83prm 17056 163prm 17058 317prm 17059 631prm 17060 1259lem1 17064 1259lem2 17065 1259lem3 17066 1259lem4 17067 1259lem5 17068 2503lem1 17070 2503lem2 17071 2503lem3 17072 2503prm 17073 4001lem1 17074 4001lem2 17075 4001lem4 17077 4001prm 17078 sincos6thpi 26025 sincos3rdpi 26026 1cubrlem 26346 log2ublem3 26453 log2ub 26454 basellem5 26589 basellem8 26592 ppiub 26707 bclbnd 26783 bposlem8 26794 bposlem9 26795 2lgslem3d 26902 2lgsoddprmlem3d 26916 ex-exp 29703 ex-bc 29705 ex-gcd 29710 ex-lcm 29711 hgt750lemd 33660 hgt750lem2 33664 problem5 34654 60gcd6e6 40869 60lcm7e420 40875 3exp7 40918 3lexlogpow5ineq1 40919 3lexlogpow5ineq5 40925 aks4d1p1p5 40940 aks4d1p1 40941 lhe4.4ex1a 43088 wallispi2lem2 44788 fmtno5lem1 46221 fmtno5lem4 46224 fmtno5 46225 fmtno4prmfac 46240 fmtno5faclem2 46248 fmtno5faclem3 46249 fmtno5fac 46250 flsqrt5 46262 139prmALT 46264 127prm 46267 mod42tp1mod8 46270 2t6m3t4e0 47024 zlmodzxzequa 47177 zlmodzxzequap 47180 |
Copyright terms: Public domain | W3C validator |