Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 6cn | Structured version Visualization version GIF version |
Description: The number 6 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
6cn | ⊢ 6 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-6 12049 | . 2 ⊢ 6 = (5 + 1) | |
2 | 5cn 12070 | . . 3 ⊢ 5 ∈ ℂ | |
3 | ax-1cn 10938 | . . 3 ⊢ 1 ∈ ℂ | |
4 | 2, 3 | addcli 10990 | . 2 ⊢ (5 + 1) ∈ ℂ |
5 | 1, 4 | eqeltri 2836 | 1 ⊢ 6 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 (class class class)co 7284 ℂcc 10878 1c1 10881 + caddc 10883 5c5 12040 6c6 12041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 ax-1cn 10938 ax-addcl 10940 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2731 df-clel 2817 df-2 12045 df-3 12046 df-4 12047 df-5 12048 df-6 12049 |
This theorem is referenced by: 7cn 12076 7m1e6 12114 6p2e8 12141 6p3e9 12142 halfpm6th 12203 6p4e10 12518 6t2e12 12550 6t3e18 12551 6t5e30 12553 5recm6rec 12590 bpoly2 15776 bpoly3 15777 bpoly4 15778 efi4p 15855 ef01bndlem 15902 cos01bnd 15904 3lcm2e6woprm 16329 6lcm4e12 16330 2exp8 16799 2exp11 16800 2exp16 16801 19prm 16828 83prm 16833 163prm 16835 317prm 16836 631prm 16837 1259lem1 16841 1259lem2 16842 1259lem3 16843 1259lem4 16844 1259lem5 16845 2503lem1 16847 2503lem2 16848 2503lem3 16849 2503prm 16850 4001lem1 16851 4001lem2 16852 4001lem4 16854 4001prm 16855 sincos6thpi 25681 sincos3rdpi 25682 1cubrlem 26000 log2ublem3 26107 log2ub 26108 basellem5 26243 basellem8 26246 ppiub 26361 bclbnd 26437 bposlem8 26448 bposlem9 26449 2lgslem3d 26556 2lgsoddprmlem3d 26570 ex-exp 28823 ex-bc 28825 ex-gcd 28830 ex-lcm 28831 hgt750lemd 32637 hgt750lem2 32641 problem5 33636 60gcd6e6 40019 60lcm7e420 40025 3exp7 40068 3lexlogpow5ineq1 40069 3lexlogpow5ineq5 40075 aks4d1p1p5 40090 aks4d1p1 40091 lhe4.4ex1a 41954 wallispi2lem2 43620 fmtno5lem1 45016 fmtno5lem4 45019 fmtno5 45020 fmtno4prmfac 45035 fmtno5faclem2 45043 fmtno5faclem3 45044 fmtno5fac 45045 flsqrt5 45057 139prmALT 45059 127prm 45062 mod42tp1mod8 45065 2t6m3t4e0 45695 zlmodzxzequa 45848 zlmodzxzequap 45851 |
Copyright terms: Public domain | W3C validator |