| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6cn | Structured version Visualization version GIF version | ||
| Description: The number 6 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| 6cn | ⊢ 6 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-6 12305 | . 2 ⊢ 6 = (5 + 1) | |
| 2 | 5cn 12326 | . . 3 ⊢ 5 ∈ ℂ | |
| 3 | ax-1cn 11185 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 2, 3 | addcli 11239 | . 2 ⊢ (5 + 1) ∈ ℂ |
| 5 | 1, 4 | eqeltri 2830 | 1 ⊢ 6 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 (class class class)co 7403 ℂcc 11125 1c1 11128 + caddc 11130 5c5 12296 6c6 12297 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-1cn 11185 ax-addcl 11187 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-clel 2809 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 |
| This theorem is referenced by: 7cn 12332 7m1e6 12370 6p2e8 12397 6p3e9 12398 halfpm6th 12461 6p4e10 12778 6t2e12 12810 6t3e18 12811 6t5e30 12813 5recm6rec 12849 bpoly2 16071 bpoly3 16072 bpoly4 16073 efi4p 16153 ef01bndlem 16200 cos01bnd 16202 3lcm2e6woprm 16632 6lcm4e12 16633 2exp8 17106 2exp11 17107 2exp16 17108 19prm 17135 83prm 17140 163prm 17142 317prm 17143 631prm 17144 1259lem1 17148 1259lem2 17149 1259lem3 17150 1259lem4 17151 1259lem5 17152 2503lem1 17154 2503lem2 17155 2503lem3 17156 2503prm 17157 4001lem1 17158 4001lem2 17159 4001lem4 17161 4001prm 17162 sincos6thpi 26475 sincos3rdpi 26476 1cubrlem 26801 log2ublem3 26908 log2ub 26909 basellem5 27045 basellem8 27048 ppiub 27165 bclbnd 27241 bposlem8 27252 bposlem9 27253 2lgslem3d 27360 2lgsoddprmlem3d 27374 ex-exp 30377 ex-bc 30379 ex-gcd 30384 ex-lcm 30385 hgt750lemd 34626 hgt750lem2 34630 problem5 35637 60gcd6e6 41963 60lcm7e420 41969 3exp7 42012 3lexlogpow5ineq1 42013 3lexlogpow5ineq5 42019 aks4d1p1p5 42034 aks4d1p1 42035 sq6 42291 lhe4.4ex1a 44301 wallispi2lem2 46049 fmtno5lem1 47515 fmtno5lem4 47518 fmtno5 47519 fmtno4prmfac 47534 fmtno5faclem2 47542 fmtno5faclem3 47543 fmtno5fac 47544 flsqrt5 47556 139prmALT 47558 127prm 47561 mod42tp1mod8 47564 2t6m3t4e0 48271 zlmodzxzequa 48420 zlmodzxzequap 48423 |
| Copyright terms: Public domain | W3C validator |