Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 6cn | Structured version Visualization version GIF version |
Description: The number 6 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
6cn | ⊢ 6 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-6 12133 | . 2 ⊢ 6 = (5 + 1) | |
2 | 5cn 12154 | . . 3 ⊢ 5 ∈ ℂ | |
3 | ax-1cn 11022 | . . 3 ⊢ 1 ∈ ℂ | |
4 | 2, 3 | addcli 11074 | . 2 ⊢ (5 + 1) ∈ ℂ |
5 | 1, 4 | eqeltri 2833 | 1 ⊢ 6 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 (class class class)co 7329 ℂcc 10962 1c1 10965 + caddc 10967 5c5 12124 6c6 12125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-1cn 11022 ax-addcl 11024 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 df-cleq 2728 df-clel 2814 df-2 12129 df-3 12130 df-4 12131 df-5 12132 df-6 12133 |
This theorem is referenced by: 7cn 12160 7m1e6 12198 6p2e8 12225 6p3e9 12226 halfpm6th 12287 6p4e10 12602 6t2e12 12634 6t3e18 12635 6t5e30 12637 5recm6rec 12674 bpoly2 15858 bpoly3 15859 bpoly4 15860 efi4p 15937 ef01bndlem 15984 cos01bnd 15986 3lcm2e6woprm 16409 6lcm4e12 16410 2exp8 16879 2exp11 16880 2exp16 16881 19prm 16908 83prm 16913 163prm 16915 317prm 16916 631prm 16917 1259lem1 16921 1259lem2 16922 1259lem3 16923 1259lem4 16924 1259lem5 16925 2503lem1 16927 2503lem2 16928 2503lem3 16929 2503prm 16930 4001lem1 16931 4001lem2 16932 4001lem4 16934 4001prm 16935 sincos6thpi 25770 sincos3rdpi 25771 1cubrlem 26089 log2ublem3 26196 log2ub 26197 basellem5 26332 basellem8 26335 ppiub 26450 bclbnd 26526 bposlem8 26537 bposlem9 26538 2lgslem3d 26645 2lgsoddprmlem3d 26659 ex-exp 29043 ex-bc 29045 ex-gcd 29050 ex-lcm 29051 hgt750lemd 32869 hgt750lem2 32873 problem5 33867 60gcd6e6 40259 60lcm7e420 40265 3exp7 40308 3lexlogpow5ineq1 40309 3lexlogpow5ineq5 40315 aks4d1p1p5 40330 aks4d1p1 40331 lhe4.4ex1a 42257 wallispi2lem2 43938 fmtno5lem1 45345 fmtno5lem4 45348 fmtno5 45349 fmtno4prmfac 45364 fmtno5faclem2 45372 fmtno5faclem3 45373 fmtno5fac 45374 flsqrt5 45386 139prmALT 45388 127prm 45391 mod42tp1mod8 45394 2t6m3t4e0 46024 zlmodzxzequa 46177 zlmodzxzequap 46180 |
Copyright terms: Public domain | W3C validator |