| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6cn | Structured version Visualization version GIF version | ||
| Description: The number 6 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| 6cn | ⊢ 6 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-6 12229 | . 2 ⊢ 6 = (5 + 1) | |
| 2 | 5cn 12250 | . . 3 ⊢ 5 ∈ ℂ | |
| 3 | ax-1cn 11102 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 2, 3 | addcli 11156 | . 2 ⊢ (5 + 1) ∈ ℂ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 6 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7369 ℂcc 11042 1c1 11045 + caddc 11047 5c5 12220 6c6 12221 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11102 ax-addcl 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 |
| This theorem is referenced by: 7cn 12256 7m1e6 12289 6p2e8 12316 6p3e9 12317 halfpm6th 12380 6p4e10 12697 6t2e12 12729 6t3e18 12730 6t5e30 12732 5recm6rec 12768 bpoly2 15999 bpoly3 16000 bpoly4 16001 efi4p 16081 ef01bndlem 16128 cos01bnd 16130 3lcm2e6woprm 16561 6lcm4e12 16562 2exp8 17035 2exp11 17036 2exp16 17037 19prm 17064 83prm 17069 163prm 17071 317prm 17072 631prm 17073 1259lem1 17077 1259lem2 17078 1259lem3 17079 1259lem4 17080 1259lem5 17081 2503lem1 17083 2503lem2 17084 2503lem3 17085 2503prm 17086 4001lem1 17087 4001lem2 17088 4001lem4 17090 4001prm 17091 sincos6thpi 26401 sincos3rdpi 26402 1cubrlem 26727 log2ublem3 26834 log2ub 26835 basellem5 26971 basellem8 26974 ppiub 27091 bclbnd 27167 bposlem8 27178 bposlem9 27179 2lgslem3d 27286 2lgsoddprmlem3d 27300 ex-exp 30352 ex-bc 30354 ex-gcd 30359 ex-lcm 30360 hgt750lemd 34612 hgt750lem2 34616 problem5 35629 60gcd6e6 41965 60lcm7e420 41971 3exp7 42014 3lexlogpow5ineq1 42015 3lexlogpow5ineq5 42021 aks4d1p1p5 42036 aks4d1p1 42037 sq6 42256 lhe4.4ex1a 44291 wallispi2lem2 46043 fmtno5lem1 47527 fmtno5lem4 47530 fmtno5 47531 fmtno4prmfac 47546 fmtno5faclem2 47554 fmtno5faclem3 47555 fmtno5fac 47556 flsqrt5 47568 139prmALT 47570 127prm 47573 mod42tp1mod8 47576 2t6m3t4e0 48309 zlmodzxzequa 48458 zlmodzxzequap 48461 |
| Copyright terms: Public domain | W3C validator |