| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6cn | Structured version Visualization version GIF version | ||
| Description: The number 6 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| 6cn | ⊢ 6 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-6 12333 | . 2 ⊢ 6 = (5 + 1) | |
| 2 | 5cn 12354 | . . 3 ⊢ 5 ∈ ℂ | |
| 3 | ax-1cn 11213 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 2, 3 | addcli 11267 | . 2 ⊢ (5 + 1) ∈ ℂ |
| 5 | 1, 4 | eqeltri 2837 | 1 ⊢ 6 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 (class class class)co 7431 ℂcc 11153 1c1 11156 + caddc 11158 5c5 12324 6c6 12325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-1cn 11213 ax-addcl 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2729 df-clel 2816 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 |
| This theorem is referenced by: 7cn 12360 7m1e6 12398 6p2e8 12425 6p3e9 12426 halfpm6th 12487 6p4e10 12805 6t2e12 12837 6t3e18 12838 6t5e30 12840 5recm6rec 12877 bpoly2 16093 bpoly3 16094 bpoly4 16095 efi4p 16173 ef01bndlem 16220 cos01bnd 16222 3lcm2e6woprm 16652 6lcm4e12 16653 2exp8 17126 2exp11 17127 2exp16 17128 19prm 17155 83prm 17160 163prm 17162 317prm 17163 631prm 17164 1259lem1 17168 1259lem2 17169 1259lem3 17170 1259lem4 17171 1259lem5 17172 2503lem1 17174 2503lem2 17175 2503lem3 17176 2503prm 17177 4001lem1 17178 4001lem2 17179 4001lem4 17181 4001prm 17182 sincos6thpi 26558 sincos3rdpi 26559 1cubrlem 26884 log2ublem3 26991 log2ub 26992 basellem5 27128 basellem8 27131 ppiub 27248 bclbnd 27324 bposlem8 27335 bposlem9 27336 2lgslem3d 27443 2lgsoddprmlem3d 27457 ex-exp 30469 ex-bc 30471 ex-gcd 30476 ex-lcm 30477 hgt750lemd 34663 hgt750lem2 34667 problem5 35674 60gcd6e6 42005 60lcm7e420 42011 3exp7 42054 3lexlogpow5ineq1 42055 3lexlogpow5ineq5 42061 aks4d1p1p5 42076 aks4d1p1 42077 sq6 42329 lhe4.4ex1a 44348 wallispi2lem2 46087 fmtno5lem1 47540 fmtno5lem4 47543 fmtno5 47544 fmtno4prmfac 47559 fmtno5faclem2 47567 fmtno5faclem3 47568 fmtno5fac 47569 flsqrt5 47581 139prmALT 47583 127prm 47586 mod42tp1mod8 47589 2t6m3t4e0 48264 zlmodzxzequa 48413 zlmodzxzequap 48416 |
| Copyright terms: Public domain | W3C validator |