| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6cn | Structured version Visualization version GIF version | ||
| Description: The number 6 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| 6cn | ⊢ 6 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-6 12195 | . 2 ⊢ 6 = (5 + 1) | |
| 2 | 5cn 12216 | . . 3 ⊢ 5 ∈ ℂ | |
| 3 | ax-1cn 11067 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 2, 3 | addcli 11121 | . 2 ⊢ (5 + 1) ∈ ℂ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 6 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7349 ℂcc 11007 1c1 11010 + caddc 11012 5c5 12186 6c6 12187 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11067 ax-addcl 11069 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 |
| This theorem is referenced by: 7cn 12222 7m1e6 12255 6p2e8 12282 6p3e9 12283 halfpm6th 12346 6p4e10 12663 6t2e12 12695 6t3e18 12696 6t5e30 12698 5recm6rec 12734 bpoly2 15964 bpoly3 15965 bpoly4 15966 efi4p 16046 ef01bndlem 16093 cos01bnd 16095 3lcm2e6woprm 16526 6lcm4e12 16527 2exp8 17000 2exp11 17001 2exp16 17002 19prm 17029 83prm 17034 163prm 17036 317prm 17037 631prm 17038 1259lem1 17042 1259lem2 17043 1259lem3 17044 1259lem4 17045 1259lem5 17046 2503lem1 17048 2503lem2 17049 2503lem3 17050 2503prm 17051 4001lem1 17052 4001lem2 17053 4001lem4 17055 4001prm 17056 sincos6thpi 26423 sincos3rdpi 26424 1cubrlem 26749 log2ublem3 26856 log2ub 26857 basellem5 26993 basellem8 26996 ppiub 27113 bclbnd 27189 bposlem8 27200 bposlem9 27201 2lgslem3d 27308 2lgsoddprmlem3d 27322 ex-exp 30394 ex-bc 30396 ex-gcd 30401 ex-lcm 30402 hgt750lemd 34616 hgt750lem2 34620 problem5 35646 60gcd6e6 41981 60lcm7e420 41987 3exp7 42030 3lexlogpow5ineq1 42031 3lexlogpow5ineq5 42037 aks4d1p1p5 42052 aks4d1p1 42053 sq6 42272 lhe4.4ex1a 44306 wallispi2lem2 46057 fmtno5lem1 47541 fmtno5lem4 47544 fmtno5 47545 fmtno4prmfac 47560 fmtno5faclem2 47568 fmtno5faclem3 47569 fmtno5fac 47570 flsqrt5 47582 139prmALT 47584 127prm 47587 mod42tp1mod8 47590 2t6m3t4e0 48336 zlmodzxzequa 48485 zlmodzxzequap 48488 |
| Copyright terms: Public domain | W3C validator |