| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6cn | Structured version Visualization version GIF version | ||
| Description: The number 6 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| 6cn | ⊢ 6 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-6 12253 | . 2 ⊢ 6 = (5 + 1) | |
| 2 | 5cn 12274 | . . 3 ⊢ 5 ∈ ℂ | |
| 3 | ax-1cn 11126 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 2, 3 | addcli 11180 | . 2 ⊢ (5 + 1) ∈ ℂ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 6 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 1c1 11069 + caddc 11071 5c5 12244 6c6 12245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 |
| This theorem is referenced by: 7cn 12280 7m1e6 12313 6p2e8 12340 6p3e9 12341 halfpm6th 12404 6p4e10 12721 6t2e12 12753 6t3e18 12754 6t5e30 12756 5recm6rec 12792 bpoly2 16023 bpoly3 16024 bpoly4 16025 efi4p 16105 ef01bndlem 16152 cos01bnd 16154 3lcm2e6woprm 16585 6lcm4e12 16586 2exp8 17059 2exp11 17060 2exp16 17061 19prm 17088 83prm 17093 163prm 17095 317prm 17096 631prm 17097 1259lem1 17101 1259lem2 17102 1259lem3 17103 1259lem4 17104 1259lem5 17105 2503lem1 17107 2503lem2 17108 2503lem3 17109 2503prm 17110 4001lem1 17111 4001lem2 17112 4001lem4 17114 4001prm 17115 sincos6thpi 26425 sincos3rdpi 26426 1cubrlem 26751 log2ublem3 26858 log2ub 26859 basellem5 26995 basellem8 26998 ppiub 27115 bclbnd 27191 bposlem8 27202 bposlem9 27203 2lgslem3d 27310 2lgsoddprmlem3d 27324 ex-exp 30379 ex-bc 30381 ex-gcd 30386 ex-lcm 30387 hgt750lemd 34639 hgt750lem2 34643 problem5 35656 60gcd6e6 41992 60lcm7e420 41998 3exp7 42041 3lexlogpow5ineq1 42042 3lexlogpow5ineq5 42048 aks4d1p1p5 42063 aks4d1p1 42064 sq6 42283 lhe4.4ex1a 44318 wallispi2lem2 46070 fmtno5lem1 47554 fmtno5lem4 47557 fmtno5 47558 fmtno4prmfac 47573 fmtno5faclem2 47581 fmtno5faclem3 47582 fmtno5fac 47583 flsqrt5 47595 139prmALT 47597 127prm 47600 mod42tp1mod8 47603 2t6m3t4e0 48336 zlmodzxzequa 48485 zlmodzxzequap 48488 |
| Copyright terms: Public domain | W3C validator |