Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 6cn | Structured version Visualization version GIF version |
Description: The number 6 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
6cn | ⊢ 6 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-6 11970 | . 2 ⊢ 6 = (5 + 1) | |
2 | 5cn 11991 | . . 3 ⊢ 5 ∈ ℂ | |
3 | ax-1cn 10860 | . . 3 ⊢ 1 ∈ ℂ | |
4 | 2, 3 | addcli 10912 | . 2 ⊢ (5 + 1) ∈ ℂ |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ 6 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 1c1 10803 + caddc 10805 5c5 11961 6c6 11962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-1cn 10860 ax-addcl 10862 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-clel 2817 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 |
This theorem is referenced by: 7cn 11997 7m1e6 12035 6p2e8 12062 6p3e9 12063 halfpm6th 12124 6p4e10 12438 6t2e12 12470 6t3e18 12471 6t5e30 12473 5recm6rec 12510 bpoly2 15695 bpoly3 15696 bpoly4 15697 efi4p 15774 ef01bndlem 15821 cos01bnd 15823 3lcm2e6woprm 16248 6lcm4e12 16249 2exp8 16718 2exp11 16719 2exp16 16720 19prm 16747 83prm 16752 163prm 16754 317prm 16755 631prm 16756 1259lem1 16760 1259lem2 16761 1259lem3 16762 1259lem4 16763 1259lem5 16764 2503lem1 16766 2503lem2 16767 2503lem3 16768 2503prm 16769 4001lem1 16770 4001lem2 16771 4001lem4 16773 4001prm 16774 sincos6thpi 25577 sincos3rdpi 25578 1cubrlem 25896 log2ublem3 26003 log2ub 26004 basellem5 26139 basellem8 26142 ppiub 26257 bclbnd 26333 bposlem8 26344 bposlem9 26345 2lgslem3d 26452 2lgsoddprmlem3d 26466 ex-exp 28715 ex-bc 28717 ex-gcd 28722 ex-lcm 28723 hgt750lemd 32528 hgt750lem2 32532 problem5 33527 60gcd6e6 39940 60lcm7e420 39946 3exp7 39989 3lexlogpow5ineq1 39990 3lexlogpow5ineq5 39996 aks4d1p1p5 40011 aks4d1p1 40012 lhe4.4ex1a 41836 wallispi2lem2 43503 fmtno5lem1 44893 fmtno5lem4 44896 fmtno5 44897 fmtno4prmfac 44912 fmtno5faclem2 44920 fmtno5faclem3 44921 fmtno5fac 44922 flsqrt5 44934 139prmALT 44936 127prm 44939 mod42tp1mod8 44942 2t6m3t4e0 45572 zlmodzxzequa 45725 zlmodzxzequap 45728 |
Copyright terms: Public domain | W3C validator |