![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 6cn | Structured version Visualization version GIF version |
Description: The number 6 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
6cn | ⊢ 6 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-6 12330 | . 2 ⊢ 6 = (5 + 1) | |
2 | 5cn 12351 | . . 3 ⊢ 5 ∈ ℂ | |
3 | ax-1cn 11210 | . . 3 ⊢ 1 ∈ ℂ | |
4 | 2, 3 | addcli 11264 | . 2 ⊢ (5 + 1) ∈ ℂ |
5 | 1, 4 | eqeltri 2834 | 1 ⊢ 6 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 (class class class)co 7430 ℂcc 11150 1c1 11153 + caddc 11155 5c5 12321 6c6 12322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-1cn 11210 ax-addcl 11212 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-cleq 2726 df-clel 2813 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 |
This theorem is referenced by: 7cn 12357 7m1e6 12395 6p2e8 12422 6p3e9 12423 halfpm6th 12484 6p4e10 12802 6t2e12 12834 6t3e18 12835 6t5e30 12837 5recm6rec 12874 bpoly2 16089 bpoly3 16090 bpoly4 16091 efi4p 16169 ef01bndlem 16216 cos01bnd 16218 3lcm2e6woprm 16648 6lcm4e12 16649 2exp8 17122 2exp11 17123 2exp16 17124 19prm 17151 83prm 17156 163prm 17158 317prm 17159 631prm 17160 1259lem1 17164 1259lem2 17165 1259lem3 17166 1259lem4 17167 1259lem5 17168 2503lem1 17170 2503lem2 17171 2503lem3 17172 2503prm 17173 4001lem1 17174 4001lem2 17175 4001lem4 17177 4001prm 17178 sincos6thpi 26572 sincos3rdpi 26573 1cubrlem 26898 log2ublem3 27005 log2ub 27006 basellem5 27142 basellem8 27145 ppiub 27262 bclbnd 27338 bposlem8 27349 bposlem9 27350 2lgslem3d 27457 2lgsoddprmlem3d 27471 ex-exp 30478 ex-bc 30480 ex-gcd 30485 ex-lcm 30486 hgt750lemd 34641 hgt750lem2 34645 problem5 35653 60gcd6e6 41985 60lcm7e420 41991 3exp7 42034 3lexlogpow5ineq1 42035 3lexlogpow5ineq5 42041 aks4d1p1p5 42056 aks4d1p1 42057 sq6 42307 lhe4.4ex1a 44324 wallispi2lem2 46027 fmtno5lem1 47477 fmtno5lem4 47480 fmtno5 47481 fmtno4prmfac 47496 fmtno5faclem2 47504 fmtno5faclem3 47505 fmtno5fac 47506 flsqrt5 47518 139prmALT 47520 127prm 47523 mod42tp1mod8 47526 2t6m3t4e0 48192 zlmodzxzequa 48341 zlmodzxzequap 48344 |
Copyright terms: Public domain | W3C validator |