| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6cn | Structured version Visualization version GIF version | ||
| Description: The number 6 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| 6cn | ⊢ 6 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-6 12192 | . 2 ⊢ 6 = (5 + 1) | |
| 2 | 5cn 12213 | . . 3 ⊢ 5 ∈ ℂ | |
| 3 | ax-1cn 11064 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 2, 3 | addcli 11118 | . 2 ⊢ (5 + 1) ∈ ℂ |
| 5 | 1, 4 | eqeltri 2827 | 1 ⊢ 6 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 (class class class)co 7346 ℂcc 11004 1c1 11007 + caddc 11009 5c5 12183 6c6 12184 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-1cn 11064 ax-addcl 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-clel 2806 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 |
| This theorem is referenced by: 7cn 12219 7m1e6 12252 6p2e8 12279 6p3e9 12280 halfpm6th 12343 6p4e10 12660 6t2e12 12692 6t3e18 12693 6t5e30 12695 5recm6rec 12731 bpoly2 15964 bpoly3 15965 bpoly4 15966 efi4p 16046 ef01bndlem 16093 cos01bnd 16095 3lcm2e6woprm 16526 6lcm4e12 16527 2exp8 17000 2exp11 17001 2exp16 17002 19prm 17029 83prm 17034 163prm 17036 317prm 17037 631prm 17038 1259lem1 17042 1259lem2 17043 1259lem3 17044 1259lem4 17045 1259lem5 17046 2503lem1 17048 2503lem2 17049 2503lem3 17050 2503prm 17051 4001lem1 17052 4001lem2 17053 4001lem4 17055 4001prm 17056 sincos6thpi 26452 sincos3rdpi 26453 1cubrlem 26778 log2ublem3 26885 log2ub 26886 basellem5 27022 basellem8 27025 ppiub 27142 bclbnd 27218 bposlem8 27229 bposlem9 27230 2lgslem3d 27337 2lgsoddprmlem3d 27351 ex-exp 30430 ex-bc 30432 ex-gcd 30437 ex-lcm 30438 hgt750lemd 34661 hgt750lem2 34665 problem5 35713 60gcd6e6 42107 60lcm7e420 42113 3exp7 42156 3lexlogpow5ineq1 42157 3lexlogpow5ineq5 42163 aks4d1p1p5 42178 aks4d1p1 42179 sq6 42398 lhe4.4ex1a 44432 wallispi2lem2 46180 fmtno5lem1 47663 fmtno5lem4 47666 fmtno5 47667 fmtno4prmfac 47682 fmtno5faclem2 47690 fmtno5faclem3 47691 fmtno5fac 47692 flsqrt5 47704 139prmALT 47706 127prm 47709 mod42tp1mod8 47712 2t6m3t4e0 48458 zlmodzxzequa 48607 zlmodzxzequap 48610 |
| Copyright terms: Public domain | W3C validator |